Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease
- PMID: 20187247
- PMCID: PMC4111643
- DOI: 10.1002/mds.22782
Enhancing neuroplasticity in the basal ganglia: the role of exercise in Parkinson's disease
Abstract
Epidemiological and clinical trials have suggested that exercise is beneficial for patients with Parkinson's disease (PD). However, the underlying mechanisms and potential for disease modification are currently unknown. This review presents current findings from our laboratories in patients with PD and animal models. The data indicate that alterations in both dopaminergic and glutamatergic neurotransmission, induced by activity-dependent (exercise) processes, may mitigate the cortically driven hyper-excitability in the basal ganglia normally observed in the parkinsonian state. These insights have potential to identify novel therapeutic treatments capable of reversing or delaying disease progression in PD.
Conflict of interest statement
Conflict of interest: Nothing to report.
References
-
- Miyai I, Fujimoto Y, Yamamoto H, et al. Long-term effect of body weight-supported treadmill training in Parkinson’s disease: a randomized controlled trial. Arch Phys Med Rehabil. 2002;83:1370–1373. - PubMed
-
- Schenkman M, Cutson TM, Kuchibhatla M, et al. Exercise to improve spinal flexibility and function for people with Parkinson’s disease: a randomized, controlled trial. J Am Geriatr Soc. 1998;46:1207–1216. - PubMed
-
- Comella CL, Stebbins GT, Brown-Toms N, Goetz CG. Physical therapy and Parkinson’s disease: a controlled clinical trial. Neurology. 1994;44:376–378. - PubMed
-
- Toole T, Maitland CG, Warren E, Hubmann MF, Panton L. The effects of loading and unloading treadmill walking on balance, gait, fall risk, and daily function in Parkinsonism. NeuroRehabilitation. 2005;20:307–322. - PubMed
-
- Adkins DL, Boychuk J, Remple MS, Kleim JA. Motor training induces experience-specific patterns of plasticity across motor cortex and spinal cord. J Appl Physiol. 2006;101:1776–1782. - PubMed
