Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun 1;144(2):259-66.
doi: 10.1016/j.jconrel.2010.02.024. Epub 2010 Feb 24.

Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy

Affiliations

Tumoral acidic pH-responsive MPEG-poly(beta-amino ester) polymeric micelles for cancer targeting therapy

Kyung Hyun Min et al. J Control Release. .

Abstract

Herein, we evaluated the tumoral low pH targeting characteristics of pH-responsive polymer micelles in cancer targeting therapy. To design the pH-responsive polymeric micelles, hydrophilic methyl ether poly(ethylene glycol) (MPEG) and pH-responsive/biodegradable poly(beta-amino ester) (PAE) were copolymerized using a Michael-type step polymerization, resulting in an MEPG-PAE block copolymer. The amphiphilic MPEG-PAE block copolymer formed polymeric micelles with nano-sized diameter by self-assembly, which showed a sharp pH-dependant micellization/demicellization transition at the tumoral acidic pH value (pH 6.4). For the cancer image and therapy, fluorescence dye, tetramethylrhodamine isothiocyanate (TRITC), or anticancer drug, camptothecin (CPT), was efficiently encapsulated into the pH-responsive polymeric micelles (pH-PMs) by a simple solvent casting method. The TRITC or CPT encapsulated pH-PMs (TRITC-pH-PMs or CPT-pH-PMs) showed rapid release of TRITC or CPT in weakly acidic aqueous (pH 6.4) because they still presented a sharp tumoral acid pH-responsive micellization/demicellization transition. The pH-PMs with 10wt.% of TRITC could deliver substantially more fluorescence dyes to the target tumor tissue in MDA-MB231 human breast tumor-bearing mice, compared to the control polymeric micelles of PEG-poly(l-lactic acid) (PEG-PLLA). Importantly, CPT-pH-PMs exhibited significantly increased therapeutic efficacy with minimum side effects by other tissues in breast tumor-bearing mice, compared to free CPT and CPT encapsulated PEG-PLLA micelles. The tumoral acidic pH-responsive polymeric micelles are highly useful for cancer targeting therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources