Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991;17(1):29-38; discussion 39-43.

Cellular interactions in erythroblastic islands in long-term bone marrow cultures, as studied by time-lapse video

Affiliations
  • PMID: 2018858

Cellular interactions in erythroblastic islands in long-term bone marrow cultures, as studied by time-lapse video

T D Allen et al. Blood Cells. 1991.

Abstract

Long-term bone marrow cultures (LTBMC) are readily converted from the usual granulopoietic to erythropoietic production by the addition of anemic mouse serum (AMS). The "statics" of proliferation and maturation, previously shown by ultrastructural methods to closely mirror the in vivo situation, were studied dynamically using a time-lapse video system. Several cell pedigrees were followed, but the most complete series showed three successive divisions and subsequent enucleations in the progeny of three synchronously mitotic cells observed in the culture; this is indicative of a five division sequence in the erythron. As in erythroblastic islets observed in marrow in vivo, the striking synchrony of maturation was maintained in vitro. Furthermore, when some of the erythroid progeny became displaced to other macrophages, the synchrony, which was maintained by the original erythroid group on the original erythroblastic islet macrophage, was lost. Time-lapse video, which is inexpensive to run and can be maintained in continuous recording for many weeks, is an ideal technique for recording both erythroid cell pedigrees, and the initial events leading to the formation of an erythroblastic islet in vitro after stimulation with AMS.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources