Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp
- PMID: 20190090
- PMCID: PMC2849218
- DOI: 10.1128/AEM.01998-09
Biofilm formation on reverse osmosis membranes is initiated and dominated by Sphingomonas spp
Abstract
The initial formation and spatiotemporal development of microbial biofilm layers on surfaces of new and clean reverse osmosis (RO) membranes and feed-side spacers were monitored in situ using flow cells placed in parallel with the RO system of a full-scale water treatment plant. The feed water of the RO system had been treated by the sequential application of coagulation, flocculation, sand filtration, ultrafiltration, and cartridge filtration processes. The design of the flow cells permitted the production of permeate under cross-flow conditions similar to those in spiral-wound RO membrane elements of the full-scale system. Membrane autopsies were done after 4, 8, 16, and 32 days of flow-cell operation. A combination of molecular (fluorescence in situ hybridization [FISH], denaturing gradient gel electrophoresis [DGGE], and cloning) and microscopic (field emission scanning electron, epifluorescence, and confocal laser scanning microscopy) techniques was applied to analyze the abundance, composition, architecture, and three-dimensional structure of biofilm communities. The results of the study point out the unique role of Sphingomonas spp. in the initial formation and subsequent maturation of biofilms on the RO membrane and feed-side spacer surfaces.
Figures






Similar articles
-
Molecular characterization of the bacterial communities in the different compartments of a full-scale reverse-osmosis water purification plant.Appl Environ Microbiol. 2008 Sep;74(17):5297-304. doi: 10.1128/AEM.00387-08. Epub 2008 Jul 11. Appl Environ Microbiol. 2008. PMID: 18621875 Free PMC article.
-
Investigation of microbial communities on reverse osmosis membranes used for process water production.Water Sci Technol. 2007;55(8-9):181-90. doi: 10.2166/wst.2007.257. Water Sci Technol. 2007. PMID: 17546985
-
Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems.Water Res. 2011 Jan;45(2):405-16. doi: 10.1016/j.watres.2010.07.058. Epub 2010 Jul 27. Water Res. 2011. PMID: 21111441
-
Biofouling of reverse-osmosis membranes during tertiary wastewater desalination: microbial community composition.Water Res. 2014 Mar 1;50:341-9. doi: 10.1016/j.watres.2013.10.044. Epub 2013 Oct 31. Water Res. 2014. PMID: 24231030
-
Community structure of microbial biofilms associated with membrane-based water purification processes as revealed using a polyphasic approach.Appl Microbiol Biotechnol. 2004 Jan;63(4):466-73. doi: 10.1007/s00253-003-1286-7. Epub 2003 Apr 8. Appl Microbiol Biotechnol. 2004. PMID: 12682791
Cited by
-
Nitric oxide treatment for the control of reverse osmosis membrane biofouling.Appl Environ Microbiol. 2015 Apr;81(7):2515-24. doi: 10.1128/AEM.03404-14. Epub 2015 Jan 30. Appl Environ Microbiol. 2015. PMID: 25636842 Free PMC article.
-
Optimized aeration strategies for nitrogen removal efficiency: application of end gas recirculation aeration in the fixed bed biofilm reactor.Environ Sci Pollut Res Int. 2019 Sep;26(27):28216-28227. doi: 10.1007/s11356-019-06050-9. Epub 2019 Jul 31. Environ Sci Pollut Res Int. 2019. PMID: 31368074
-
Draft genome sequence of Sphingomonas paucimobilis strain Sph5, isolated from tap water filtration membrane.Microbiol Resour Announc. 2024 Jan 17;13(1):e0034523. doi: 10.1128/MRA.00345-23. Epub 2023 Dec 1. Microbiol Resour Announc. 2024. PMID: 38038463 Free PMC article.
-
Determining the effects of aeration intensity and reactor height to diameter (H/D) ratio on granule stability based on bubble behavior analysis.Environ Sci Pollut Res Int. 2019 Jan;26(1):784-796. doi: 10.1007/s11356-018-3666-7. Epub 2018 Nov 10. Environ Sci Pollut Res Int. 2019. PMID: 30415362
-
Microbial Nitrogen Metabolism in Chloraminated Drinking Water Reservoirs.mSphere. 2020 Apr 29;5(2):e00274-20. doi: 10.1128/mSphere.00274-20. mSphere. 2020. PMID: 32350093 Free PMC article.
References
-
- Azeredo, J., and R. Oliveira. 2000. The role of exopolymers in the attachment of Sphingomonas paucimobilis. Biofouling 16:59-67.
-
- Baker, J. S., and L. Y. Dudley. 1998. Biofouling in membrane systems—a review. Desalination 118:81-89.
-
- Balkwill, D. L., J. K. Fredrickson, and M. F. Romine. 2003. Sphingomonas and related genera. In M. Dworkin (ed.), The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed., release 3.14. Springer-Verlag, New York, NY.
-
- Bereschenko, L. A., G. H. J. Heilig, M. M. Nederlof, M. C. M. van Loosdrecht, A. J. M. Stams, and G. J. W. Euverink. 2008. Molecular characterization of the bacterial communities in the different compartments of a full-scale reverse-osmosis water purification plant. Appl. Environ. Microbiol. 74:5297-5304. - PMC - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous