Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010;33(3):498-503.
doi: 10.1248/bpb.33.498.

Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human

Affiliations
Free article

Renal secretion of uric acid by organic anion transporter 2 (OAT2/SLC22A7) in human

Masanobu Sato et al. Biol Pharm Bull. 2010.
Free article

Abstract

The physiological function of organic anion transporter OAT2 (SLC22A7) remains unclear, but since OAT2 transports purine derivatives, it may be involved in renal handling of uric acid, the final metabolite of purine derivatives. In the present study, we studied uric acid transport in stably OAT2-expressing HEK293 cells (HEK293/OAT2). OAT2 mediated uptake, but not efflux, of [(14)C]uric acid. Uric acid transport was saturable with K(m) of 1168+/-335 muM (mean and S.E.M.) and V(max) of 2.57+/-0.350 nmol/min/mg protein. The [(14)C]uric acid uptake was sensitive to Cl(-) and was enhanced at acidic pH. In cis-inhibition assay, [(14)C]uric acid uptake was inhibited by several mono- or dicarboxylic acids, but it was not trans-stimulated by any of the compounds tested. The pattern of inhibition of OAT2-mediated uric acid transport by various drugs was different from that of OAT1- or OAT3-mediated transport. Furthermore, OAT2-mediated transport of uric acid was inhibited by an antiuricosuric drug, pyrazinecarboxylic acid. These results revealed distinct characteristics of uric acid transport via OAT2 compared with other uric acid transporters, suggesting that OAT2 plays a role in renal uric acid uptake from blood as a first step of tubular secretion. OAT2 may therefore be a potential target for regulating serum uric acid level.

PubMed Disclaimer

Similar articles

Cited by

Publication types