Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials
- PMID: 20191559
- DOI: 10.1002/elps.200900564
Nonlinear Smoluchowski velocity for electroosmosis of Power-law fluids over a surface with arbitrary zeta potentials
Abstract
Electroosmotic flow of Power-law fluids over a surface with arbitrary zeta potentials is analyzed. The governing equations including the nonlinear Poisson-Boltzmann equation, the Cauchy momentum equation and the continuity equation are solved to seek exact solutions for the electroosmotic velocity, shear stress, and dynamic viscosity distributions inside the electric double layer. Specifically, an expression for the general Smoluchowski velocity is obtained for electroosmosis of Power-law fluids in a fashion similar to the classic Smoluchowski velocity for Newtonian fluids. The existing Smoluchowski slip velocities under two special cases, (i) for Newtonian fluids with arbitrary zeta potentials and (ii) for Power-law fluids with small zeta potentials, can be recovered from our derived formula. It is interesting to note that the general Smoluchowski velocity for non-Newtonian Power-law fluids is a nonlinear function of the electric field strength and surface zeta potentials; this is due to the coupling electrostatics and non-Newtonian fluid behavior, which is different from its counterpart for Newtonian fluids. This general Smoluchowski velocity is of practical significance in determining the flow rates in microfluidic devices involving non-Newtonian Power-law fluids.
Similar articles
-
Analysis of electroosmotic flow of power-law fluids in a slit microchannel.J Colloid Interface Sci. 2008 Oct 15;326(2):503-10. doi: 10.1016/j.jcis.2008.06.028. Epub 2008 Jun 19. J Colloid Interface Sci. 2008. PMID: 18656891
-
Electroosmotic flows of non-Newtonian power-law fluids in a cylindrical microchannel.Electrophoresis. 2013 Mar;34(5):662-7. doi: 10.1002/elps.201200507. Epub 2013 Feb 5. Electrophoresis. 2013. PMID: 23229874
-
Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows.J Colloid Interface Sci. 2008 Jan 15;317(2):631-6. doi: 10.1016/j.jcis.2007.09.027. Epub 2007 Sep 15. J Colloid Interface Sci. 2008. PMID: 17935728
-
Electrokinetics of non-Newtonian fluids: a review.Adv Colloid Interface Sci. 2013 Dec;201-202:94-108. doi: 10.1016/j.cis.2013.09.001. Epub 2013 Sep 23. Adv Colloid Interface Sci. 2013. PMID: 24148843 Review.
-
Zeta potential and electroosmotic mobility in microfluidic devices fabricated from hydrophobic polymers: 2. Slip and interfacial water structure.Electrophoresis. 2008 Mar;29(5):1102-14. doi: 10.1002/elps.200800735. Electrophoresis. 2008. PMID: 18306185 Review.
Cited by
-
An Exact Solution for Power-Law Fluids in a Slit Microchannel with Different Zeta Potentials under Electroosmotic Forces.Micromachines (Basel). 2018 Oct 5;9(10):504. doi: 10.3390/mi9100504. Micromachines (Basel). 2018. PMID: 30424437 Free PMC article.
-
Characterizing Extracellular Vesicles and Particles Derived from Skeletal Muscle Myoblasts and Myotubes and the Effect of Acute Contractile Activity.Membranes (Basel). 2022 Apr 26;12(5):464. doi: 10.3390/membranes12050464. Membranes (Basel). 2022. PMID: 35629791 Free PMC article.
-
Electroosmotic Flow of Viscoelastic Fluid in a Nanochannel Connecting Two Reservoirs.Micromachines (Basel). 2019 Oct 31;10(11):747. doi: 10.3390/mi10110747. Micromachines (Basel). 2019. PMID: 31683717 Free PMC article.
-
An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction.Biomicrofluidics. 2014 Mar 3;8(2):021802. doi: 10.1063/1.4866853. eCollection 2014 Mar. Biomicrofluidics. 2014. PMID: 24803957 Free PMC article.
-
Electroosmotic Flow of Non-Newtonian Fluid in Porous Polymer Membrane at High Zeta Potentials.Micromachines (Basel). 2020 Nov 27;11(12):1046. doi: 10.3390/mi11121046. Micromachines (Basel). 2020. PMID: 33260968 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources