Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Feb;62(2):101-11.

[Brain-machine interface--current status and future prospects]

[Article in Japanese]
Affiliations
  • PMID: 20192030
Review

[Brain-machine interface--current status and future prospects]

[Article in Japanese]
Junichi Ushiba. Brain Nerve. 2010 Feb.

Abstract

Recent advances in brain activity analysis and computational algorithms have enabled people with severe motor disorders to control external devices via brain activity. Brain-machine interface (BMI)/brain-computer interface has gained importance as the ultimate strategy for functional compensation because it improves impaired neuromuscular systems. Invasive BMI performed using needle arrays can best control robotic arms or computer cursors because it records neural activity in the primary motor cortex in detail. The extensive and validated physiological background of recorded signals enables researchers to develop highly accurate BMI systems with needle electrodes. Less invasive neural recording with an electrocorticogram (ECoG)-electrode array provides good temporal and spatial information for use in prosthetic control. ECoG electrodes have wide clinical applications in pain control and epilepsy; therefore, techniques for electrode implantation are well established compared to those for needle arrays. These electrodes may find wide clinical applications if their accuracy level reaches that suitable for practical use. Noninvasive BMI involving neural recording by electroencephalography (EEG) is the most widely used technique because of a convenient experimental setup, although it provides a limited range of decodable motor outputs. In EEG, arc-shaped mu rhythms of 8-12 Hz appear around the sensorimotor area in the resting state and diminish in amplitude during motor imagery. Thus, the mu rhythm amplitude may correlate with cortical excitability of the sensorimotor area, and EEG-BMI may be useful in the neurorehabilitation of patients with stroke-induced hemiplegia. Research on BMI as a therapeutic tool though emergent, may widen the scope of conventional BMI.

PubMed Disclaimer

Similar articles

MeSH terms

LinkOut - more resources