Metal hyperaccumulation in plants
- PMID: 20192749
- DOI: 10.1146/annurev-arplant-042809-112156
Metal hyperaccumulation in plants
Abstract
During the history of life on Earth, tectonic and climatic change repeatedly generated large territories that were virtually devoid of life and exhibited harsh environmental conditions. The ability of a few specialist pioneer plants to colonize such hostile environments was thus of paramount ecological importance for the continuous maintenance of primary production over time. Yet, we know very little about how extreme traits evolve and function in plants. Recent breakthroughs have given first insights into the molecular basis underlying the complex extreme model trait of metal hyperaccumulation and associated metal hypertolerance. This review gives an introduction into the hyperaccumulator research field and its history; provides an overview of hyperaccumulator germplasm; describes the state of the art of our understanding of the physiological, molecular, and genetic basis underlying metal hyperaccumulation and its evolution; and highlights future research needs and opportunities.
Similar articles
-
Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics.Curr Opin Plant Biol. 2011 Jun;14(3):252-9. doi: 10.1016/j.pbi.2011.04.003. Epub 2011 Apr 29. Curr Opin Plant Biol. 2011. PMID: 21531166 Review.
-
Comparative understanding of metal hyperaccumulation in plants: a mini-review.Environ Geochem Health. 2021 Apr;43(4):1599-1607. doi: 10.1007/s10653-020-00533-2. Epub 2020 Feb 14. Environ Geochem Health. 2021. PMID: 32060864 Review.
-
Biomolecular approaches to understanding metal tolerance and hyperaccumulation in plants.Metallomics. 2020 Jun 24;12(6):840-859. doi: 10.1039/d0mt00043d. Metallomics. 2020. PMID: 32432639 Review.
-
Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4.Nature. 2008 May 15;453(7193):391-5. doi: 10.1038/nature06877. Epub 2008 Apr 20. Nature. 2008. PMID: 18425111
-
Evolution of the metal hyperaccumulation and hypertolerance traits.Plant Cell Environ. 2020 Dec;43(12):2969-2986. doi: 10.1111/pce.13821. Epub 2020 Jul 19. Plant Cell Environ. 2020. PMID: 32520430 Review.
Cited by
-
Transition metal complexes of phyllobilins - a new realm of bioinorganic chemistry.Dalton Trans. 2015 Jun 14;44(22):10116-27. doi: 10.1039/c5dt00474h. Dalton Trans. 2015. PMID: 25923782 Free PMC article.
-
Nicotianamine in zinc and iron homeostasis.Plant Cell. 2012 Feb;24(2):373. doi: 10.1105/tpc.112.240212. Epub 2012 Feb 28. Plant Cell. 2012. PMID: 22374391 Free PMC article. No abstract available.
-
Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri.Appl Environ Microbiol. 2015 Mar;81(6):2173-81. doi: 10.1128/AEM.03359-14. Epub 2015 Jan 16. Appl Environ Microbiol. 2015. PMID: 25595759 Free PMC article.
-
Transmembrane transport and stress response genes play an important role in adaptation of Arabidopsis halleri to metalliferous soils.Sci Rep. 2018 Oct 31;8(1):16085. doi: 10.1038/s41598-018-33938-2. Sci Rep. 2018. PMID: 30382172 Free PMC article.
-
Proline improves copper tolerance in chickpea (Cicer arietinum).Protoplasma. 2010 Sep;245(1-4):173-81. doi: 10.1007/s00709-010-0178-9. Epub 2010 Jul 13. Protoplasma. 2010. PMID: 20625778
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources