Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip
- PMID: 20192773
- DOI: 10.1146/annurev.biophys.050708.133630
Protein crystallization using microfluidic technologies based on valves, droplets, and SlipChip
Abstract
To obtain protein crystals, researchers must search for conditions in multidimensional chemical space. Empirically, thousands of crystallization experiments are carried out to screen various precipitants at multiple concentrations. Microfluidics can manipulate fluids on a nanoliter scale, and it affects crystallization twofold. First, it miniaturizes the experiments that can currently be done on a larger scale and enables crystallization of proteins that are available only in small amounts. Second, it offers unique experimental approaches that are difficult or impossible to implement on a larger scale. Ongoing development of microfluidic techniques and their integration with protein production, characterization, and in situ diffraction promises to accelerate the progress of structural biology.
Similar articles
-
Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.Curr Opin Struct Biol. 2005 Oct;15(5):548-55. doi: 10.1016/j.sbi.2005.08.009. Curr Opin Struct Biol. 2005. PMID: 16154351 Free PMC article. Review.
-
Microfluidic Chips for In Situ Crystal X-ray Diffraction and In Situ Dynamic Light Scattering for Serial Crystallography.J Vis Exp. 2018 Apr 24;(134):57133. doi: 10.3791/57133. J Vis Exp. 2018. PMID: 29757285 Free PMC article.
-
Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets.J Am Chem Soc. 2003 Sep 17;125(37):11170-1. doi: 10.1021/ja037166v. J Am Chem Soc. 2003. PMID: 16220918
-
High-throughput crystallization screening.Methods Mol Biol. 2014;1140:159-68. doi: 10.1007/978-1-4939-0354-2_12. Methods Mol Biol. 2014. PMID: 24590716
-
Advanced Methods of Protein Crystallization.Methods Mol Biol. 2017;1607:51-76. doi: 10.1007/978-1-4939-7000-1_3. Methods Mol Biol. 2017. PMID: 28573569 Review.
Cited by
-
White paper on high-throughput process development for integrated continuous biomanufacturing.Biotechnol Bioeng. 2021 Sep;118(9):3275-3286. doi: 10.1002/bit.27757. Epub 2021 Apr 2. Biotechnol Bioeng. 2021. PMID: 33749840 Free PMC article. Review.
-
Utilising NV based quantum sensing for velocimetry at the nanoscale.Sci Rep. 2020 Mar 24;10(1):5298. doi: 10.1038/s41598-020-61095-y. Sci Rep. 2020. PMID: 32210251 Free PMC article.
-
A programmable microfluidic platform for multisample injection, discretization, and droplet manipulation.Biomicrofluidics. 2020 Feb 5;14(1):014112. doi: 10.1063/1.5143434. eCollection 2020 Jan. Biomicrofluidics. 2020. PMID: 32038741 Free PMC article.
-
User-defined local stimulation of live tissue through a movable microfluidic port.Lab Chip. 2018 Jul 10;18(14):2003-2012. doi: 10.1039/c8lc00204e. Lab Chip. 2018. PMID: 29904762 Free PMC article.
-
Multiparameter screening on SlipChip used for nanoliter protein crystallization combining free interface diffusion and microbatch methods.J Am Chem Soc. 2010 Jan 13;132(1):112-9. doi: 10.1021/ja908558m. J Am Chem Soc. 2010. PMID: 20000709 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources