Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar;234(1):177-98.
doi: 10.1111/j.0105-2896.2009.00868.x.

Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets

Affiliations
Review

Comparative genomics as a tool to reveal functional equivalences between human and mouse dendritic cell subsets

Karine Crozat et al. Immunol Rev. 2010 Mar.

Abstract

During evolution, vertebrates have developed an adaptive immune system able to cope with a variety of pathogens. Dendritic cells (DCs) are central to this process. DCs integrate information derived from pathogens or endogenous danger signals and convey them to T lymphocytes. Most of the present knowledge on DCs was generated in mice or by using human DCs differentiated in vitro from monocytes. In both species, several DC subsets have been identified in vivo based on differences in their phenotypes, anatomical locations or functions. In mice, protective immunity against intracellular pathogens or tumors can be induced most efficiently by targeting antigens to the CD8 alpha(+) DCs, a subset of DCs which resides in lymphoid tissues and is especially efficient at cross-presenting exogenous antigens to CD8(+) T lymphocytes. In contrary, harnessing human DC subsets for medical purposes is currently hampered by insufficient knowledge about these cells. To overcome this cognitive gap, we are using comparative genomics as a tool for designing hypotheses and experiments to further characterize DC subset functions and their molecular control, including the investigation of the functional equivalences that might exist between human and mouse DC subsets.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources