Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec 1;89(44):3138-42.

[Characteristics of electrophysiology and effects of ouabain on transient outward potassium current and L-type calcium current of left atrium posterior wall in rabbits]

[Article in Chinese]
Affiliations
  • PMID: 20193278

[Characteristics of electrophysiology and effects of ouabain on transient outward potassium current and L-type calcium current of left atrium posterior wall in rabbits]

[Article in Chinese]
Teng Wang et al. Zhonghua Yi Xue Za Zhi. .

Abstract

Objective: To investigate the properties of electrophysiology and effects of ouabain upon transient outward potassium current (I(to)) and L-type calcium current (I(Ca-L)) of left atrium posterior wall (LAPW) and left atrium appendage tissue (LAA)in rabbit so as to provide the scientific explanations that LAPW and ouabain can enhance atrial fibrillation (AF) vulnerability through increasing electrophysiological heterogeneity and electrical remodeling of different regions of left atrium in rabbits.

Methods: Atrial myocytes from LAPWs and LAAs of rabbits on an in vitro heart perfusion system were obtained by enzymatic dissociation. The whole-cell patch-clamp technique was used to assess the effects of ouabain upon I(to) and I(Ca-L). The current-voltage (I-V) curves of I(to) and I(Ca-L) in LAPW and LAA myocytes were fitted before and after ouabain administration.

Results: (1) With holding potential +50 mV and commanding potential +50 mV, the current densities of LAPW I(to) decreased slightly less than that of LAA I(to) in control groups (P > 0.05). After ouabain administration, the current densities of LAPW I(to) were significantly larger than that of LAA I(to) [(10.97 +/- 0.58) pA/pF vs (9.39 +/- 0.83) pA/pF, P < 0.05]. The I-V curve of LAPW I(to) was slightly lowered to I-V curve of LAA I(to) in control groups. But with perfusion of ouabain, the I-V curve of LAPW I(to) opposed to I-V curve of LAA I(to) significantly changed from the bottom to the top with the same upward direction. (2) With the voltage clamp protocol of I(Ca-L), the current densities of LAPW I(Ca-L) markedly decreased compared with that of LAA I(Ca-L) in control groups (P < 0.05). With the addition of ouabain, the peak of amplitude of LAPW I(Ca-L) at +20 mV obviously increased to that of LAA I(Ca-L) [(-11.13 +/- 0.99) pA/pF vs (-8.86 +/- 0.51) pA/pF, P < 0.01]. In the control groups, the I-V curve of LAPW I(Ca-L) was shifted to the bottom of all I-V curves of I(Ca-L). Through the effects of ouabain, the I-V curve of LAPW I(Ca-L) was completely upgraded to the top of other I-V curves of I(Ca-L). However, all shapes and directions of current peak of I-V curves of I(Ca-L) remained unchanged in both groups.

Conclusion: The distribution properties of I(Ca-L) have significant difference in LAPW. Ouabain can accentuate the electrophysiological heterogeneity and electrical remodeling of I(to) and I(Ca-L) in LAPW of rabbits. It may become the triggering factor and persisting basis of AF vulnerability.

PubMed Disclaimer

Similar articles

Publication types