The FMN-dependent two-component monooxygenase systems
- PMID: 20193654
- DOI: 10.1016/j.abb.2010.02.007
The FMN-dependent two-component monooxygenase systems
Abstract
The FMN-dependent two-component monooxygenase systems catalyze a diverse range of reactions. These two-component systems are composed of an FMN reductase enzyme and a monooxygenase enzyme that catalyze the oxidation of various substrates. The role of the reductase is to supply reduced flavin to the monooxygenase enzyme, while the monooxygenase enzyme utilizes the reduced flavin to activate molecular oxygen. Unlike flavoproteins with a tightly or covalently bound prosthetic group, these enzymes catalyze the reductive and oxidative half-reaction on two separate enzymes. An interesting feature of these enzymes is their ability to transfer reduced flavin from the reductase to the monooxygenase enzyme. This review covers the reported mechanistic and structural properties of these enzyme systems, and evaluates the mechanism of flavin transfer.
Copyright 2010 Elsevier Inc. All rights reserved.
Similar articles
-
Vibrio harveyi flavin reductase--luciferase fusion protein mimics a single-component bifunctional monooxygenase.Biochemistry. 2008 Jan 8;47(1):368-77. doi: 10.1021/bi701392b. Epub 2007 Dec 8. Biochemistry. 2008. PMID: 18067321
-
Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase.Biochemistry. 2007 Jul 24;46(29):8611-23. doi: 10.1021/bi7006614. Epub 2007 Jun 27. Biochemistry. 2007. PMID: 17595116
-
Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.Biochem Biophys Res Commun. 2005 Dec 9;338(1):590-8. doi: 10.1016/j.bbrc.2005.09.081. Epub 2005 Sep 26. Biochem Biophys Res Commun. 2005. PMID: 16236251 Review.
-
Investigations of two-component flavin-dependent monooxygenase systems.Methods Enzymol. 2019;620:399-422. doi: 10.1016/bs.mie.2019.03.018. Epub 2019 Apr 2. Methods Enzymol. 2019. PMID: 31072495
-
Mechanism for sulfur acquisition by the alkanesulfonate monooxygenase system.Bioorg Chem. 2011 Dec;39(5-6):178-84. doi: 10.1016/j.bioorg.2011.08.001. Epub 2011 Aug 10. Bioorg Chem. 2011. PMID: 21880344 Review.
Cited by
-
Camphor pathway redux: functional recombinant expression of 2,5- and 3,6-diketocamphane monooxygenases of Pseudomonas putida ATCC 17453 with their cognate flavin reductase catalyzing Baeyer-Villiger reactions.Appl Environ Microbiol. 2013 May;79(10):3282-93. doi: 10.1128/AEM.03958-12. Epub 2013 Mar 22. Appl Environ Microbiol. 2013. PMID: 23524667 Free PMC article.
-
The C-terminal domain of 4-hydroxyphenylacetate 3-hydroxylase from Acinetobacter baumannii is an autoinhibitory domain.J Biol Chem. 2012 Jul 27;287(31):26213-22. doi: 10.1074/jbc.M112.354472. Epub 2012 Jun 3. J Biol Chem. 2012. PMID: 22661720 Free PMC article.
-
Inter-Species Redox Coupling by Flavin Reductases and FMN-Dependent Two-Component Monooxygenases Undertaking Nucleophilic Baeyer-Villiger Biooxygenations.Microorganisms. 2022 Dec 27;11(1):71. doi: 10.3390/microorganisms11010071. Microorganisms. 2022. PMID: 36677363 Free PMC article.
-
Hydroxyl Radical-Coupled Electron-Transfer Mechanism of Flavin-Dependent Hydroxylases.J Phys Chem B. 2019 Sep 26;123(38):8065-8073. doi: 10.1021/acs.jpcb.9b08178. Epub 2019 Sep 18. J Phys Chem B. 2019. PMID: 31532200 Free PMC article.
-
Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases.Nat Chem Biol. 2020 May;16(5):556-563. doi: 10.1038/s41589-020-0476-2. Epub 2020 Feb 17. Nat Chem Biol. 2020. PMID: 32066967
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources