Generation of absolute controlled crystal chirality by the removal of crystal water from achiral crystal of nucleobase cytosine
- PMID: 20196621
- PMCID: PMC2831480
- DOI: 10.1021/ja1000938
Generation of absolute controlled crystal chirality by the removal of crystal water from achiral crystal of nucleobase cytosine
Abstract
The enantioselective formation of chiral crystal of achiral nucleobase cytosine was achieved mediated by the crystal direction selective dehydration of crystal water in the achiral crystal of cytosine monohydrate (P2(1)/c). Heat transfer from the enantiotopic face of the single crystal of cytosine monohydrate afforded the enantiomorphous crystal of anhydrous cytosine.
Figures




Similar articles
-
Asymmetric autocatalysis of pyrimidyl alkanol and its application to the study on the origin of homochirality.Acc Chem Res. 2014 Dec 16;47(12):3643-54. doi: 10.1021/ar5003208. Epub 2014 Nov 19. Acc Chem Res. 2014. PMID: 25511374
-
Achiral nucleobase cytosine acts as an origin of homochirality of biomolecules in conjunction with asymmetric autocatalysis.Angew Chem Int Ed Engl. 2008;47(3):496-9. doi: 10.1002/anie.200703634. Angew Chem Int Ed Engl. 2008. PMID: 18058873 No abstract available.
-
Asymmetric autocatalysis induced by chiral crystals of achiral tetraphenylethylenes.Orig Life Evol Biosph. 2010 Feb;40(1):65-78. doi: 10.1007/s11084-009-9183-4. Epub 2009 Nov 13. Orig Life Evol Biosph. 2010. PMID: 19911300
-
Enantioselective synthesis mediated by chiral crystal of achiral hippuric acid in conjunction with asymmetric autocatalysis.Chem Commun (Camb). 2006 May 7;(17):1869-71. doi: 10.1039/b602442d. Epub 2006 Mar 21. Chem Commun (Camb). 2006. PMID: 16622512
-
Spontaneous achiral symmetry breaking in liquid crystalline phases.Top Curr Chem. 2012;318:303-30. doi: 10.1007/128_2011_242. Top Curr Chem. 2012. PMID: 21915774 Review.
Cited by
-
Asymmetric autocatalysis. Chiral symmetry breaking and the origins of homochirality of organic molecules.Proc Jpn Acad Ser B Phys Biol Sci. 2019;95(3):89-110. doi: 10.2183/pjab.95.009. Proc Jpn Acad Ser B Phys Biol Sci. 2019. PMID: 30853700 Free PMC article. Review.
-
Enhancement of Hydrate Stability through Substitutional Defects.Cryst Growth Des. 2023 Jun 28;23(8):5860-5867. doi: 10.1021/acs.cgd.3c00457. eCollection 2023 Aug 2. Cryst Growth Des. 2023. PMID: 37547883 Free PMC article.
-
Asymmetric Autocatalysis as an Efficient Link Between the Origin of Homochirality and Highly Enantioenriched Compounds.Orig Life Evol Biosph. 2022 Sep;52(1-3):57-74. doi: 10.1007/s11084-022-09626-7. Epub 2022 Aug 12. Orig Life Evol Biosph. 2022. PMID: 35960427 Review.
-
Water Dimer-Driven DNA Base Superstructure with Mismatched Hydrogen Bonding.J Am Chem Soc. 2022 Nov 9;144(44):20227-20231. doi: 10.1021/jacs.2c09575. Epub 2022 Oct 27. J Am Chem Soc. 2022. PMID: 36301687 Free PMC article.
-
Enantioselective C-C bond formation as a result of the oriented prochirality of an achiral aldehyde at the single-crystal face upon treatment with a dialkyl zinc vapor.Angew Chem Int Ed Engl. 2011 Jul 18;50(30):6796-8. doi: 10.1002/anie.201102031. Epub 2011 Jun 15. Angew Chem Int Ed Engl. 2011. PMID: 21678535 Free PMC article. No abstract available.
References
-
- Eschenmoser A. Science 1999, 284, 2118. - PubMed
- Mislow K. Collect. Czech. Chem. Commun. 2003, 68, 849.
- Girard C.; Kagan H. B. Angew. Chem., Int. Ed. 1998, 37, 2923. - PubMed
- Green M. M.; Park J.-W.; Sato T.; Teramoto A.; Lifson S.; Selinger R. L. B.; Selinger J. V. Angew. Chem., Int. Ed. 1999, 38, 3139. - PubMed
- Feringa B. L.; Van Delden R. A. Angew. Chem., Int. Ed. 1999, 38, 3419. - PubMed
- Bonner W. A.; Rubenstein E. BioSystems 1987, 20, 99. - PubMed
- Kawasaki T.; Sato M.; Ishiguro S.; Saito T.; Morishita Y.; Sato I.; Nishino H.; Inoue Y.; Soai K. J. Am. Chem. Soc. 2005, 127, 3274. - PubMed
- Hazen R. M.; Sholl D. S. Nat. Mater. 2003, 2, 367. - PubMed
-
- Green B. S.; Lahav M.; Rabinovich D. Acc. Chem. Res. 1979, 12, 191.
- Lennartson A.; Olsson S.; Sundberg J.; Håkansson M. Angew. Chem., Int. Ed. 2009, 48, 3137. - PubMed
-
- Matsuura T.; Koshima H. J. Photochem. Photobiol., C 2005, 6, 7.
- Sakamoto M. Chem.—Eur. J. 1997, 3, 684.
-
- Kondepudi D. K.; Kaufman R.; Singh N. Science 1990, 250, 975. - PubMed
- McBride J. M.; Carter R. L. Angew. Chem., Int. Ed. 1991, 30, 293.
-
- Claborn K.; Isborn C.; Kaminsky W.; Kahr B. Angew. Chem., Int. Ed. 2008, 47, 5706. - PubMed
- Chenchaiah P. C.; Holland H. L.; Richardson M. F. Chem. Commun. 1982, 436.
- Kuhn A.; Fischer P. Angew. Chem., Int. Ed. 2009, 48, 6857. - PubMed
- Vaida M.; Shimon L. J. W.; Weisinger-Lewin Y.; Frolow F.; Lahav M.; Leiserowitz L.; McMullan R. K. Science 1988, 241, 1475. - PubMed
- Viedma C. Phys. Rev. Lett. 2005, 94, 065504. - PubMed
- Ribo J. M.; Crusats J.; Sagues F.; Claret J.; Rubires R. Science 2001, 292, 2063. - PubMed
- Breslow R.; Levine M. S. Proc. Natl. Acad. Sci. U.S.A. 2004, 103, 12979. - PMC - PubMed
- Hayashi Y.; Matsuzawa M.; Yamaguchi J.; Yonehara S.; Matsumoto Y.; Shoji M.; Hashizume D.; Koshino H. Angew. Chem., Int. Ed. 2006, 45, 4593. - PubMed
- Klussmann M.; Iwamura H.; Mathew S. P.; Wells D. H.; Pandya U.; Armstrong A.; Blackmond D. G. Nature 2006, 441, 621. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources