Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
- PMID: 20197054
- PMCID: PMC3616265
- DOI: 10.1016/j.cmet.2010.02.006
Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle
Abstract
During fasting and after exercise, skeletal muscle efficiently switches from carbohydrate to lipid as the main energy source to preserve glycogen stores and blood glucose levels for glucose-dependent tissues. Skeletal muscle cells sense this limitation in glucose availability and transform this information into transcriptional and metabolic adaptations. Here we demonstrate that AMPK acts as the prime initial sensor that translates this information into SIRT1-dependent deacetylation of the transcriptional regulators PGC-1alpha and FOXO1, culminating in the transcriptional modulation of mitochondrial and lipid utilization genes. Deficient AMPK activity compromises SIRT1-dependent responses to exercise and fasting, resulting in impaired PGC-1alpha deacetylation and blunted induction of mitochondrial gene expression. Thus, we conclude that AMPK acts as the primordial trigger for fasting- and exercise-induced adaptations in skeletal muscle and that activation of SIRT1 and its downstream signaling pathways are improperly triggered in AMPK-deficient states.
2010 Elsevier Inc. All rights reserved.
Figures
References
-
- Barnes BR, Glund S, Long YC, Hjalm G, Andersson L, Zierath JR. 5′-AMP-activated protein kinase regulates skeletal muscle glycogen content and ergogenics. Faseb J. 2005a;19:773–779. - PubMed
-
- Barnes BR, Long YC, Steiler TL, Leng Y, Galuska D, Wojtaszewski JF, Andersson L, Zierath JR. Changes in exercise-induced gene expression in 5′-AMP-activated protein kinase gamma3-null and gamma3 R225Q transgenic mice. Diabetes. 2005b;54:3484–3489. - PubMed
-
- Barnes BR, Marklund S, Steiler TL, Walter M, Hjalm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, et al. The 5′-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem. 2004;279:38441–38447. - PubMed
-
- Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;303:2011–2015. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases
Research Materials
Miscellaneous
