Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;137(3):379-83.
doi: 10.1016/j.ajodo.2008.02.028.

In-vitro assessment of temperature rise in the pulp during orthodontic bonding

Affiliations

In-vitro assessment of temperature rise in the pulp during orthodontic bonding

Siddik Malkoç et al. Am J Orthod Dentofacial Orthop. 2010 Mar.

Abstract

Introduction: In this in-vitro study, we evaluated the temperature changes in the pulp chamber during bracket bonding using 4 different light sources.

Methods: Eighty intact extracted maxillary central incisors were used. The teeth were divided into 4 groups of 20 teeth each. Brackets (Mini Twin, Dentaurum, Ispringen, Germany) were bonded with Transbond XT (3M Unitek, Monrovia, Calif) adhesive and light cured with low-intensity halogen light for 40 seconds, high-intensity halogen light for 40 seconds, light-emitting diode (LED) light for 20 seconds, and plasma arc light (PAC) for 6 seconds. Light curing was performed 5 mm from tooth surfaces. A J-type thermocouple wire was positioned in the center of the pulp chamber. The results were analyzed with analysis of variance (ANOVA) and the Tukey HSD test.

Results: ANOVA and the Tukey HSD test showed that pulp chamber temperature changes were influenced by the type of light source. All groups showed significant differences between each other (P <0.001). The intrapulpal temperature changes induced by different light sources were the following: high-intensity halogen (6.84 degrees C +/- 2.44 degrees C), low-intensity halogen (4.71 degrees C +/- 0.96 degrees C), LED (2.95 degrees C +/- 1.12 degrees C), and PAC (0.96 degrees C +/- 0.83 degrees C).

Conclusions: High- and low-intensity halogen light induced significantly higher intrapulpal temperature changes than did the LED and PAC. Except for the high intensity halogen light, orthodontic bonding with light-curing units did not exceed the critical 5.5 degrees C rise in temperature reported to produce pulpal damage.

PubMed Disclaimer

LinkOut - more resources