Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;52(6):479-87.
doi: 10.1007/s00234-009-0644-2. Epub 2010 Mar 3.

Current concepts of polymicrogyria

Affiliations
Review

Current concepts of polymicrogyria

A James Barkovich. Neuroradiology. 2010 Jun.

Abstract

Polymicrogyria is one of the most common malformations of cortical development. It has been known for many years and its clinical and MRI manifestations are well described. Recent advances in imaging, however, have revealed that polymicrogyria has many different appearances on MR imaging, suggesting that is may be a more heterogeneous malformation than previously suspected. The clinical and imaging heterogeneity of polymicrogyria is explored in this review.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Parasagittal (a) and axial (b) T1-weighted images show the delicate appearance of PMG (black arrows) in the right sylvian and suprasylvian cortex. Note the continuity of the posterior sylvian fissure on the parasagittal image (a); this is diagnostic of perisylvian PMG
Fig. 2
Fig. 2
Thick and irregularly bumpy, “coarse” appearance of PMG. Parasagittal (a) and axial (b) images show coarse PMG in the parieto-occipital (small black arrows) and perisylvian (large black arrows) regions
Fig. 3
Fig. 3
Axial FSE T2 weighted image shows right frontal PMG (white arrows) with fusion of the molecular layer of cortex resulting in paradoxically smooth cortical surface
Fig. 4
Fig. 4
Axial T1-weighted image shows diffuse coarse PMG with an appearance of “palisades” of cortex
Fig. 5
Fig. 5
Surface rendering of PMG from volumetric acquisition of data. a Image shows a parasagittal image of extensive perisylvian coarse PMG (arrows). The surface rendering (b) shows the absence of normal sulci and the bumpy cortical surface in the affected area (arrows)
Fig. 6
Fig. 6
Grade 1 perisylvian PMG. Parasagittal (a) and axial (b) T1-weighted images show coarse polymicrogyria extending from the frontal pole to the occipital pole
Fig. 7
Fig. 7
Grade 2 perisylvian PMG. Parasagittal (a) and axial (b) images show coarse perisylvian polymicrogyria sparing the anterior frontal lobes and the occipital lobes
Fig. 8
Fig. 8
Grade 3 perisylvian PMG. Parasagittal T1-weighted images (a) and axial T2-weighted images (b) show polymicrogyria limited to the insulae and operculae
Fig. 9
Fig. 9
Bilateral frontoparietal polymicrogyria. Axial (a) and coronal (b) T2-weighted images show a different appearance to the cortex, that of multiple radially oriented neuronal components separated by fibro-glial stroma. Note the prominent cerebellar fissures and the subcortical cerebellar cysts (arrows)
Fig. 10
Fig. 10
Bilateral frontal polymicrogyria. Axial T2-weighted image shows delicate PMG in both frontal lobes. The lateral ventricles are somewhat dilated
Fig. 11
Fig. 11
Bilateral parasagittal parieto-occipital polymicrogyria. Parasagittal (a) and axial (b) T1-weighted images show coarse parasagittal infoldings (arrows) of polymicrogyria

Similar articles

Cited by

References

    1. Barkovich AJ, Kuzniecky RI, Jackson GD, Guerrini R, Dobyns WB. A developmental and genetic classification for malformations of cortical development. Neurology. 2005;65:1873–1887. doi: 10.1212/01.wnl.0000183747.05269.2d. - DOI - PubMed
    1. Norman MG, McGillivray BC, Kalousek DK, Hill A, Poskitt KJ. Congenital malformations of the brain: pathologic, embryologic, clinical, radiologic and genetic aspects. Oxford: Oxford University Press; 1995.
    1. Barkovich AJ, Gressens P, Evrard P. Formation, maturation, and disorders of brain neocortex. AJNR Am J Neuroradiol. 1992;13:423–446. - PMC - PubMed
    1. Evrard P, de Saint-Georges P, Kadhim HJ, Gadisseux J-F. Pathology of prenatal encephalopathies. In: French J, editor. Child neurology and developmental disabilities. Baltimore: Paul H. Brookes; 1989. pp. 153–176.
    1. Englund C, Fink A, Lau C, et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J Neurosci. 2005;25:247–251. doi: 10.1523/JNEUROSCI.2899-04.2005. - DOI - PMC - PubMed

Publication types

MeSH terms