Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 25;114(11):4056-62.
doi: 10.1021/jp912005a.

Comparison of different theory models and basis sets in the calculations of structures and 13C NMR spectra of [Pt(en)(CBDCA-O, O')], an analogue of the antitumor drug carboplatin

Affiliations

Comparison of different theory models and basis sets in the calculations of structures and 13C NMR spectra of [Pt(en)(CBDCA-O, O')], an analogue of the antitumor drug carboplatin

Hongwei Gao et al. J Phys Chem B. .

Abstract

Comparisons of various density functional theory (DFT) methods at different basis sets in predicting the molecular structures and (13)C NMR spectra for [Pt(en)(CBDCA-O, O')], an analogue of the antitumor drug carboplatin, are reported. DFT methods including B3LYP, B3PW91, mPW1PW91, PBE1PBE, BPV86, PBEPBE, and LSDA are examined. Different basis sets including LANL2DZ, SDD, LANL2MB, CEP-4G, CEP-31G, and CEP-121G are also considered. It is remarkable that the LSDA/SDD level is clearly superior to all of the remaining density functional methods in predicting the structure of [Pt(en)(CBDCA-O, O')]. The results also indicate that the B3LYP/SDD level is the best to predict (13)C NMR spectra for [Pt(en)(CBDCA-O, O')] among all DFT methods.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources