Modeling sample variables with an Experimental Factor Ontology
- PMID: 20200009
- PMCID: PMC2853691
- DOI: 10.1093/bioinformatics/btq099
Modeling sample variables with an Experimental Factor Ontology
Abstract
Motivation: Describing biological sample variables with ontologies is complex due to the cross-domain nature of experiments. Ontologies provide annotation solutions; however, for cross-domain investigations, multiple ontologies are needed to represent the data. These are subject to rapid change, are often not interoperable and present complexities that are a barrier to biological resource users.
Results: We present the Experimental Factor Ontology, designed to meet cross-domain, application focused use cases for gene expression data. We describe our methodology and open source tools used to create the ontology. These include tools for creating ontology mappings, ontology views, detecting ontology changes and using ontologies in interfaces to enhance querying. The application of reference ontologies to data is a key problem, and this work presents guidelines on how community ontologies can be presented in an application ontology in a data-driven way.
Availability: http://www.ebi.ac.uk/efo.
Figures





Similar articles
-
The MGED Ontology: a resource for semantics-based description of microarray experiments.Bioinformatics. 2006 Apr 1;22(7):866-73. doi: 10.1093/bioinformatics/btl005. Epub 2006 Jan 21. Bioinformatics. 2006. PMID: 16428806
-
Comparison, alignment, and synchronization of cell line information between CLO and EFO.BMC Bioinformatics. 2017 Dec 21;18(Suppl 17):557. doi: 10.1186/s12859-017-1979-z. BMC Bioinformatics. 2017. PMID: 29322915 Free PMC article.
-
Data-driven ontologies.Pac Symp Biocomput. 2009:15-26. Pac Symp Biocomput. 2009. PMID: 19213131
-
Ontology annotation: mapping genomic regions to biological function.Curr Opin Chem Biol. 2007 Feb;11(1):4-11. doi: 10.1016/j.cbpa.2006.11.039. Epub 2007 Jan 5. Curr Opin Chem Biol. 2007. PMID: 17208035 Review.
-
Ontology-driven approaches to analyzing data in functional genomics.Methods Mol Biol. 2006;316:67-86. doi: 10.1385/1-59259-964-8:67. Methods Mol Biol. 2006. PMID: 16671401 Review.
Cited by
-
Development of an Ontology for Periodontitis.J Biomed Semantics. 2015 Jul 1;6:30. doi: 10.1186/s13326-015-0028-y. eCollection 2015. J Biomed Semantics. 2015. PMID: 26140188 Free PMC article.
-
Deep multiview learning to identify imaging-driven subtypes in mild cognitive impairment.BMC Bioinformatics. 2022 Sep 29;23(Suppl 3):402. doi: 10.1186/s12859-022-04946-x. BMC Bioinformatics. 2022. PMID: 36175853 Free PMC article.
-
Ontology application and use at the ENCODE DCC.Database (Oxford). 2015 Mar 16;2015:bav010. doi: 10.1093/database/bav010. Print 2015. Database (Oxford). 2015. PMID: 25776021 Free PMC article. Review.
-
A large-scale crop protection bioassay data set.Sci Data. 2015 Jul 7;2:150032. doi: 10.1038/sdata.2015.32. eCollection 2015. Sci Data. 2015. PMID: 26175909 Free PMC article.
-
A semantic proteomics dashboard (SemPoD) for data management in translational research.BMC Syst Biol. 2012;6 Suppl 3(Suppl 3):S20. doi: 10.1186/1752-0509-6-S3-S20. Epub 2012 Dec 17. BMC Syst Biol. 2012. PMID: 23282161 Free PMC article.
References
-
- Blake JA, Harris MA. The Gene Ontology (GO) project: structured vocabularies for molecular biology and their application to genome and expression analysis. Curr. Protoc. Bioinformatics. 2008 Chapter 7, Unit 7.2. - PubMed
-
- Bizer C, et al. Linked data - the story so far. Int. J. Semant. Web Inf. Syst. 2009;5:1–22.
-
- Grenon P, Smith B. SNAP and SPAN: towards dynamic spatial ontology. Spat. Cogn. Comput.Interdiscip. J. 2004;4:69–104.
-
- Gómez-Pérez A, et al. Ontological engineering. New York: Springer-Verlag; 2004.
-
- Horridge M. The OWL API: A Java API for Working with OWL 2 Ontologies. Proceedings of the OWL: Experiences and Directions 2009, Chantilly, USA, CEUR Workshop Proceedings. 2009
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Molecular Biology Databases