Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain
- PMID: 20200045
- PMCID: PMC2896527
- DOI: 10.1093/nar/gkq138
Dissecting the influence of Mg2+ on 3D architecture and ligand-binding of the guanine-sensing riboswitch aptamer domain
Abstract
Long-range tertiary interactions determine the three-dimensional structure of a number of metabolite-binding riboswitch RNA elements and were found to be important for their regulatory function. For the guanine-sensing riboswitch of the Bacillus subtilis xpt-pbuX operon, our previous NMR-spectroscopic studies indicated pre-formation of long-range tertiary contacts in the ligand-free state of its aptamer domain. Loss of the structural pre-organization in a mutant of this RNA (G37A/C61U) resulted in the requirement of Mg(2+) for ligand binding. Here, we investigate structural and stability aspects of the wild-type aptamer domain (Gsw) and the G37A/C61U-mutant (Gsw(loop)) of the guanine-sensing riboswitch and their Mg(2+)-induced folding characteristics to dissect the role of long-range tertiary interactions, the link between pre-formation of structural elements and ligand-binding properties and the functional stability. Destabilization of the long-range interactions as a result of the introduced mutations for Gsw(loop) or the increase in temperature for both Gsw and Gsw(loop) involves pronounced alterations of the conformational ensemble characteristics of the ligand-free state of the riboswitch. The increased flexibility of the conformational ensemble can, however, be compensated by Mg(2+). We propose that reduction of conformational dynamics in remote regions of the riboswitch aptamer domain is the minimal pre-requisite to pre-organize the core region for specific ligand binding.
Figures




Similar articles
-
Interplay of 'induced fit' and preorganization in the ligand induced folding of the aptamer domain of the guanine binding riboswitch.Nucleic Acids Res. 2007;35(2):572-83. doi: 10.1093/nar/gkl1094. Epub 2006 Dec 14. Nucleic Acids Res. 2007. PMID: 17175531 Free PMC article.
-
Influence of ground-state structure and Mg2+ binding on folding kinetics of the guanine-sensing riboswitch aptamer domain.Nucleic Acids Res. 2011 Dec;39(22):9768-78. doi: 10.1093/nar/gkr664. Epub 2011 Sep 2. Nucleic Acids Res. 2011. PMID: 21890900 Free PMC article.
-
Tertiary Interactions in the Unbound Guanine-Sensing Riboswitch Focus Functional Conformational Variability on the Binding Site.J Chem Inf Model. 2017 Nov 27;57(11):2822-2832. doi: 10.1021/acs.jcim.7b00567. Epub 2017 Oct 26. J Chem Inf Model. 2017. PMID: 29019403
-
An integrated perspective on RNA aptamer ligand-recognition models: clearing muddy waters.Phys Chem Chem Phys. 2017 Mar 8;19(10):6921-6932. doi: 10.1039/c6cp08798a. Phys Chem Chem Phys. 2017. PMID: 28225108 Review.
-
Expanding roles for metabolite-sensing regulatory RNAs.Curr Opin Microbiol. 2009 Apr;12(2):161-9. doi: 10.1016/j.mib.2009.01.012. Epub 2009 Feb 26. Curr Opin Microbiol. 2009. PMID: 19250859 Free PMC article. Review.
Cited by
-
Potential effects of metal ion induced two-state allostery on the regulatory mechanism of add adenine riboswitch.Commun Biol. 2022 Oct 22;5(1):1120. doi: 10.1038/s42003-022-04096-z. Commun Biol. 2022. PMID: 36273041 Free PMC article.
-
Structural principles of nucleoside selectivity in a 2'-deoxyguanosine riboswitch.Nat Chem Biol. 2011 Aug 14;7(10):748-55. doi: 10.1038/nchembio.631. Nat Chem Biol. 2011. PMID: 21841796 Free PMC article.
-
A structural intermediate pre-organizes the add adenine riboswitch for ligand recognition.Nucleic Acids Res. 2021 Jun 4;49(10):5891-5904. doi: 10.1093/nar/gkab307. Nucleic Acids Res. 2021. PMID: 33963862 Free PMC article.
-
Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study.RNA. 2013 Jul;19(7):916-26. doi: 10.1261/rna.037549.112. Epub 2013 May 28. RNA. 2013. PMID: 23716711 Free PMC article.
-
Ligand-mediated and tertiary interactions cooperatively stabilize the P1 region in the guanine-sensing riboswitch.PLoS One. 2017 Jun 22;12(6):e0179271. doi: 10.1371/journal.pone.0179271. eCollection 2017. PLoS One. 2017. PMID: 28640851 Free PMC article.
References
-
- Batey RT, Rambo RP, Doudna JA. Tertiary motifs in RNA structure and folding. Angew. Chem. Int. Ed. Engl. 1999;38:2326–2343. - PubMed
-
- Draper DE, Grilley D, Soto AM. Ions and RNA folding. Annu. Rev. Biophys. Biomol. Struct. 2005;34:221–243. - PubMed
-
- Mandal M, Breaker RR. Gene regulation by riboswitches. Nat. Rev. Mol. Cell Biol. 2004;5:451–463. - PubMed
-
- Blouin S, Mulhbacher J, Penedo JC, Lafontaine DA. Riboswitches: ancient and promising genetic regulators. Chembiochem. 2009;10:400–416. - PubMed
-
- Schwalbe H, Buck J, Fürtig B, Noeske J, Wöhnert J. Structures of RNA switches: insight into molecular recognition and tertiary structure. Angew. Chem. Int. Ed. Engl. 2007;46:1212–1219. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases