Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Jun;15(2):112-9.
doi: 10.1177/1074248409358408. Epub 2010 Mar 3.

Review article: epoxyeicosatrienoic acids: novel mediators of cardioprotection

Affiliations
Review

Review article: epoxyeicosatrienoic acids: novel mediators of cardioprotection

Kasem Nithipatikom et al. J Cardiovasc Pharmacol Ther. 2010 Jun.

Abstract

Recent evidence from a number of in vitro and in vivo studies in isolated cells and animal models has suggested that the cytochrome P450 (CYP450) pathway of arachidonic acid (AA) metabolism produces potent cardioprotective metabolites that markedly reduce reversible (myocardial stunning) and irreversible (infarct size [IS]) injury in the ischemic/reperfused heart. The major players in this protective response appear to be the AA metabolites including the regioisomers of 5,6-, 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids (EETs). The present review article will discuss the beneficial effects of the EETs on myocardial stunning and IS reduction and consider some of the signaling pathways and cellular mechanisms by which the EETs produce their beneficial effects and the possible therapeutic benefits that may result from activation of this pathway. The results discussed in this review are taken from experiments obtained from 3 diverse species in different laboratories: the mouse, rat, and dog, in which the results were nearly identical qualitatively and quantitatively, suggesting that these findings are likely to be extrapolated to man as well.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources