Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 6;115(18):3827-34.
doi: 10.1182/blood-2009-12-255992. Epub 2010 Mar 4.

Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups

Collaborators, Affiliations

Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups

Nita A Limdi et al. Blood. .

Abstract

Warfarin-dosing algorithms incorporating CYP2C9 and VKORC1 -1639G>A improve dose prediction compared with algorithms based solely on clinical and demographic factors. However, these algorithms better capture dose variability among whites than Asians or blacks. Herein, we evaluate whether other VKORC1 polymorphisms and haplotypes explain additional variation in warfarin dose beyond that explained by VKORC1 -1639G>A among Asians (n = 1103), blacks (n = 670), and whites (n = 3113). Participants were recruited from 11 countries as part of the International Warfarin Pharmacogenetics Consortium effort. Evaluation of the effects of individual VKORC1 single nucleotide polymorphisms (SNPs) and haplotypes on warfarin dose used both univariate and multi variable linear regression. VKORC1 -1639G>A and 1173C>T individually explained the greatest variance in dose in all 3 racial groups. Incorporation of additional VKORC1 SNPs or haplotypes did not further improve dose prediction. VKORC1 explained greater variability in dose among whites than blacks and Asians. Differences in the percentage of variance in dose explained by VKORC1 across race were largely accounted for by the frequency of the -1639A (or 1173T) allele. Thus, clinicians should recognize that, although at a population level, the contribution of VKORC1 toward dose requirements is higher in whites than in nonwhites; genotype predicts similar dose requirements across racial groups.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Effect of VKORC1 −1639G>A minor allele frequency in explaining warfarin dose variability at the population level. Results of a simulation study showing the influence of the frequency of the A allele for −1639G>A on the amount of variance in warfarin dose explained (R2). Quartiles and upper and lower 2.5th percentiles of the distribution of R2 values from the simulation are plotted as a function of minor allele frequency. The highest variability in dose explained would occur in a population with an A allele frequency of approximately 60% to 70%. The actual R2 estimates for each racial group in the IWPC data are plotted as squares at the observed MAF for each group.
Figure 2
Figure 2
Worldwide haplotype distribution. The frequencies of 7 globally distributed haplotypes for 6 SNPs in the VKORC1 gene are represented by pie charts over the country of origin of population samples from which they were derived. The SNPs are listed in the order in which they occur along the VKORC1 gene: −1639G>A, 497T>G, 1173C>T, 1542G>C, 2255C>T, 3730G>A. All haplotypes occurring at frequencies of less than 2.5% in all population samples tested are grouped together in the “Other” category. For the United States, the population samples are broken down into white (W), black (B), and Mexican American (MA) subgroups and by the study under which they were collected: International Warfarin Pharmacogenetics Consortium or National Health and Nutrition Examination Survey III. Detailed data underlying this figure can be found in supplemental Table 5.

References

    1. Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J. 2007;7(2):99–111. - PubMed
    1. D'Andrea G, D'Ambrosio RL, Di Perna P, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005;105(2):645–649. - PubMed
    1. Sconce EA, Khan TI, Wynne HA, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–2333. - PubMed
    1. Veenstra DL, You JH, Rieder MJ, et al. Association of Vitamin K epoxide reductase complex 1 (VKORC1) variants with warfarin dose in a Hong Kong Chinese patient population. Pharmacogenet Genomics. 2005;15(10):687–691. - PubMed
    1. Carlquist JF, Horne BD, Muhlestein JB, et al. Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis. 2006;22(3):191–197. - PubMed

Publication types

MeSH terms