Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010;17(4):279-86.
doi: 10.1159/000290044. Epub 2010 Mar 5.

Exhaustive exercise reduces tumor necrosis factor-alpha production in response to lipopolysaccharide in mice

Affiliations

Exhaustive exercise reduces tumor necrosis factor-alpha production in response to lipopolysaccharide in mice

Yohei Tanaka et al. Neuroimmunomodulation. 2010.

Abstract

Objective: Stressful exercise reduces the plasma pro-inflammatory cytokine concentration in response to lipopolysaccharide (LPS). The aim of this study was to clarify the mechanism of exhaustive exercise-induced suppression of the plasma tumor necrosis factor (TNF)-alpha concentration in response to LPS.

Methods: Male C3H/HeN mice (n = 66) were randomized to treadmill running to exhaustion (Ex) or a sedentary (Non-Ex) condition. Monocytes and splenic macrophages were collected from some animals, and other animals were injected with LPS (1 mg/kg) immediately after the exercise. The liver, lung and spleen tissues in the mice were removed 30 min after the LPS injection for determination of TNF-alpha mRNA expression. Blood and tissue samples were collected for determination of TNF-alpha and TNF receptors (TNFR) 1 h after the LPS injection.

Results: Although there was a significant suppression in LPS-induced plasma TNF-alpha in the Ex mice when compared to the Non-Ex mice (p < 0.01), soluble TNFR in plasma was not affected by the exercise. There was no change in cell-surface expression of Toll-like receptor 4 (TLR4) and in LPS-induced TNF-alpha mRNA expression and TNFR content in tissues between the Ex and Non-Ex groups. Interestingly, TNF-alpha contents in the liver, lung and spleen of the Ex mice were significantly lower than those of the Non-Ex group (p < 0.01, p < 0.01 and p < 0.05, respectively).

Conclusion: These data suggest that exhaustive exercise-induced suppression of the plasma TNF-alpha concentration despite LPS stimulation might depend on translation of TNF-alpha in tissues.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances