Circular swimming in mice after exposure to a high magnetic field
- PMID: 20206191
- PMCID: PMC2925241
- DOI: 10.1016/j.physbeh.2010.02.021
Circular swimming in mice after exposure to a high magnetic field
Abstract
There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field.
(c) 2010 Elsevier Inc. All rights reserved.
Figures





References
-
- Houpt TA, Smith JC. Conditioned taste aversion induced by exposure to high-strength static magnetic fields. In: Reilly S, Schachtman TR, editors. Conditioned Taste Aversion: Behavioral and Neural Processes. NY: Oxford University Press; 2009. pp. 422–441.
-
- Schenck JF. Health and physiological effects of human exposure to whole-body four-tesla magnetic fields during MRI. Ann. NY Acad. Sci. 1992;649:285–301. - PubMed
-
- Glover PM, Cavin I, Qian W, Bowtell R, Gowland PA. Magnetic-field-induced vertigo: a theoretical and experimental investigation. Bioelectromagnetics. 2007:28. - PubMed
-
- de Vocht F, Stevens T, Glover P, Sunderland A, Gowland P, Kromhout H. Cognitive effects of head-movements in stray fields generated by a 7 Tesla whole-body MRI magnet. Bioelectromagnetics. 2007;28:247–255. - PubMed
-
- Patel M, Williamsom RA, Dorevitch S, Buchanan S. Pilot study investigating the effect of the static magnetic field from a 9.4-T MRI on the vestibular system. J. Occup. Environ. Med. 2008;50:576–583. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials