Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation
- PMID: 20207196
- PMCID: PMC2976657
- DOI: 10.1016/j.molmed.2010.02.002
Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation
Abstract
Axonal degeneration causes morbidity in many neurological conditions including stroke, neurotrauma and multiple sclerosis. The limited ability of central nervous system (CNS) neurons to regenerate, combined with the observation that axonal damage causes clinical disability, has spurred efforts to investigate the mechanisms of axonal degeneration. Ca influx from outside the axon is a key mediator of injury. More recently, substantial pools of intra-axonal Ca sequestered in the 'axoplasmic reticulum' have been reported. These Ca stores are under the control of multimolecular 'nanocomplexes' located along the internodes under the myelin. The overactivation of these complexes during disease can lead to a lethal release of Ca from intra-axonal stores. Rich receptor pharmacology offers tantalizing therapeutic options targeting these nanocomplexes in the many diseases where axonal degeneration is prominent.
Figures




Similar articles
-
Intracellular calcium release through IP3R or RyR contributes to secondary axonal degeneration.Neurobiol Dis. 2017 Oct;106:235-243. doi: 10.1016/j.nbd.2017.07.011. Epub 2017 Jul 12. Neurobiol Dis. 2017. PMID: 28709993
-
Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons.Ann Neurol. 2014 Feb;75(2):220-9. doi: 10.1002/ana.24099. Epub 2014 Feb 18. Ann Neurol. 2014. PMID: 24395428
-
Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors.Ann Neurol. 2009 Feb;65(2):151-9. doi: 10.1002/ana.21533. Ann Neurol. 2009. PMID: 19224535 Free PMC article.
-
Metabolic injury to axons and myelin.Exp Neurol. 2013 Aug;246:26-34. doi: 10.1016/j.expneurol.2012.04.016. Epub 2012 May 1. Exp Neurol. 2013. PMID: 22569104 Review.
-
Axonal conduction and injury in multiple sclerosis: the role of sodium channels.Nat Rev Neurosci. 2006 Dec;7(12):932-41. doi: 10.1038/nrn2023. Nat Rev Neurosci. 2006. PMID: 17115075 Review.
Cited by
-
JSAP1/JIP3 and JLP regulate kinesin-1-dependent axonal transport to prevent neuronal degeneration.Cell Death Differ. 2015 Aug;22(8):1260-74. doi: 10.1038/cdd.2014.207. Epub 2015 Jan 9. Cell Death Differ. 2015. PMID: 25571974 Free PMC article.
-
Axonal spheroids in neurodegeneration.Mol Cell Neurosci. 2021 Dec;117:103679. doi: 10.1016/j.mcn.2021.103679. Epub 2021 Oct 19. Mol Cell Neurosci. 2021. PMID: 34678457 Free PMC article. Review.
-
Preserve and protect: maintaining axons within functional circuits.Trends Neurosci. 2014 Oct;37(10):572-82. doi: 10.1016/j.tins.2014.07.007. Epub 2014 Aug 26. Trends Neurosci. 2014. PMID: 25167775 Free PMC article. Review.
-
Intrinsic mechanisms of neuronal axon regeneration.Nat Rev Neurosci. 2018 Jun;19(6):323-337. doi: 10.1038/s41583-018-0001-8. Nat Rev Neurosci. 2018. PMID: 29666508 Free PMC article. Review.
-
Combined treatment targeting Ca2+ store mediated Ca2+ release and store-operated calcium entry reduces secondary axonal degeneration and improves functional outcome after SCI.Exp Neurol. 2025 Apr;386:115178. doi: 10.1016/j.expneurol.2025.115178. Epub 2025 Feb 3. Exp Neurol. 2025. PMID: 39909217
References
-
- Waxman SG, Kocsis JD, Stys PK. The Axon : structure, function and pathophysiology. Oxford University Press; New York; Oxford: 1995. p. xv.p. 692. [2] of col. plates.
-
- Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009;8(3):280–91. - PubMed
-
- Stys PK. General mechanisms of axonal damage and its prevention. J Neurol Sci. 2005;233(1-2):3–13. - PubMed
-
- Wilkins A, Scolding N. Protecting axons in multiple sclerosis. Mult Scler. 2008;14(8):1013–25. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources