Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96
- PMID: 20208028
- PMCID: PMC2863448
- DOI: 10.1128/AEM.02979-09
Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96
Abstract
The use of naturally occurring microbial antagonists to suppress plant diseases offers a favorable alternative to classical methods of plant protection. The soybean epiphyte Pseudomonas syringae pv. syringae strain 22d/93 shows great potential for controlling P. syringae pv. glycinea, the causal agent of bacterial blight of soybean. Its activity against P. syringae pv. glycinea is highly reproducible even in field trials, and the suppression mechanisms involved are of special interest. In this work we demonstrated that P. syringae pv. syringae 22d/93 produced a significantly larger amount of siderophores than the pathogen P. syringae pv. glycinea produced. While P. syringae pv. syringae 22d/93 and P. syringae pv. glycinea produce the same siderophores, achromobactin and pyoverdin, the regulation of siderophore biosynthesis in the former organism is very different from that in the latter organism. The epiphytic fitness of P. syringae pv. syringae 22d/93 mutants defective in siderophore biosynthesis was determined following spray inoculation of soybean leaves. The population size of the siderophore-negative mutant P. syringae pv. syringae strain 22d/93DeltaSid was 2 orders of magnitude lower than that of the wild type 10 days after inoculation. The growth deficiency was compensated for when wound inoculation was used, indicating the availability of iron in the presence of small lesions on the leaves. Our results suggest that siderophore production has an indirect effect on the biocontrol activity of P. syringae pv. syringae 22d/93. Although siderophore-defective mutants of P. syringae pv. syringae 22d/93 still suppressed development of bacterial blight caused by P. syringae pv. glycinea, siderophore production enhanced the epiphytic fitness and thus the competitiveness of the antagonist.
Figures




Similar articles
-
Characterization of pyoverdine and achromobactin in Pseudomonas syringae pv. phaseolicola 1448a.BMC Microbiol. 2011 Oct 3;11:218. doi: 10.1186/1471-2180-11-218. BMC Microbiol. 2011. PMID: 21967163 Free PMC article.
-
Characterization of two epiphytic bacteria from soybean leaves with antagonistic activities against Pseudomonas syringae pv. glycinea.J Basic Microbiol. 1996;36(6):453-62. doi: 10.1002/jobm.3620360611. J Basic Microbiol. 1996. PMID: 8956493
-
3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea.Chembiochem. 2008 Aug 11;9(12):1913-20. doi: 10.1002/cbic.200800080. Chembiochem. 2008. PMID: 18655083
-
Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte.Microbiol Mol Biol Rev. 2000 Sep;64(3):624-53. doi: 10.1128/MMBR.64.3.624-653.2000. Microbiol Mol Biol Rev. 2000. PMID: 10974129 Free PMC article. Review.
-
Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens.Microbiol Rev. 1992 Dec;56(4):662-76. doi: 10.1128/mr.56.4.662-676.1992. Microbiol Rev. 1992. PMID: 1480114 Free PMC article. Review.
Cited by
-
Assessment of the relevance of the antibiotic 2-amino-3-(oxirane-2,3-dicarboxamido)-propanoyl-valine from Pantoea agglomerans biological control strains against bacterial plant pathogens.Microbiologyopen. 2012 Dec;1(4):438-49. doi: 10.1002/mbo3.43. Epub 2012 Oct 30. Microbiologyopen. 2012. PMID: 23233458 Free PMC article.
-
Modes of Action of Microbial Biocontrol in the Phyllosphere.Front Microbiol. 2020 Jul 14;11:1619. doi: 10.3389/fmicb.2020.01619. eCollection 2020. Front Microbiol. 2020. PMID: 32760378 Free PMC article. Review.
-
Influence of Light on Plant-Phyllosphere Interaction.Front Plant Sci. 2018 Oct 12;9:1482. doi: 10.3389/fpls.2018.01482. eCollection 2018. Front Plant Sci. 2018. PMID: 30369938 Free PMC article. Review.
-
Pyoverdines Are Essential for the Antibacterial Activity of Pseudomonas chlororaphis YL-1 under Low-Iron Conditions.Appl Environ Microbiol. 2021 Mar 11;87(7):e02840-20. doi: 10.1128/AEM.02840-20. Print 2021 Mar 11. Appl Environ Microbiol. 2021. PMID: 33452032 Free PMC article.
-
Genomic Biosurveillance of the Kiwifruit Pathogen Pseudomonas syringae pv. actinidiae Biovar 3 Reveals Adaptation to Selective Pressures in New Zealand Orchards.Mol Plant Pathol. 2025 Feb;26(2):e70056. doi: 10.1111/mpp.70056. Mol Plant Pathol. 2025. PMID: 39915983 Free PMC article.
References
-
- Agrios, G. N. 2005. Plant pathology, 5th ed. Elsevier Academic Press, San Diego, CA.
-
- Alexander, D. B., and D. A. Zuberer. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fertil. Soil 12:39-45.
-
- Braun, S. D., J. Hofmann, A. Wensing, H. Weingart, M. S. Ullrich, D. Spiteller, and B. Völksch. In vitro antibiosis by Pseudomonas syringae Pss22d, acting against the bacterial blight pathogen of soybean plants, does not influence in planta biocontrol. J. Phytopathol., in press.
-
- Braun, S. D., B. Völksch, J. Nüske, and D. Spiteller. 2008. 3-Methylarginine from Pseudomonas syringae pv. syringae 22d/93 suppresses the bacterial blight caused by its close relative Pseudomonas syringae pv. glycinea. Chembiochem 9:1913-1920. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources