Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;5(2):231-44.
doi: 10.2217/rme.09.83.

Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair

Affiliations

Therapeutic angiogenesis by transplantation of human embryonic stem cell-derived CD133+ endothelial progenitor cells for cardiac repair

Abdul Jalil Rufaihah et al. Regen Med. 2010 Mar.

Abstract

Objective: This study aim to enhance endothelial differentiation of human embryonic stem cells (hESCs) by transduction of an adenovirus (Ad) vector expressing hVEGF(165) gene (Ad-hVEGF(165) ). Purified hESC-derived CD133(+) endothelial progenitors were transplanted into a rat myocardial infarct model to assess their ability to contribute to heart regeneration.

Methods: Optimal transduction efficiency with high cell viability was achieved by exposing differentiating hESCs to viral particles at a ratio of 1:500 for 4 h on three consecutive days.

Results: Reverse transcription-PCR analysis showed positive upregulation of VEGF, Ang-1, Flt-1, Tie-2, CD34, CD31, CD133 and Flk-1 gene expression in Ad-hVEGF(165) -transduced cells. Additionally, flow cytometric analysis of CD133, a cell surface marker, revealed an approximately fivefold increase of CD133 marker expression in Ad-hVEGF(165)-transduced cells compared with the nontransduced control. Within a rat myocardial infarct model, transplanted CD133(+) endothelial progenitor cells survived and participated, both actively and passively, in the regeneration of the infarcted myocardium, as seen by an approximately threefold increase in mature blood vessel density (13.62 +/- 1.56 vs 5.11 +/- 1.23; p < 0.01), as well as significantly reduced infarct size (28% +/- 8.2% vs 76% +/- 5.6%; p < 0.01) in the transplanted group compared with the culture medium-injected control. There was significant improvement in heart function 6 weeks post-transplantation, as confirmed by regional blood-flow analysis (1.72 +/- 0.612 ml/min/g vs 0.8 +/- 0.256 ml/min/g; p < 0.05), as well as echocardiography assessment of left ventricular ejection fraction (60.855% +/- 7.7% vs 38.22 +/- 8.6%; p < 0.05) and fractional shortening (38.63% +/- 9.3% vs 25.2% +/- 7.11%; p < 0.05).

Conclusion: hESC-derived CD133(+) endothelial progenitor cells can be utilized to regenerate the infarcted heart.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources