Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;51(2):704-12.
doi: 10.1016/j.neuroimage.2010.02.083. Epub 2010 Mar 6.

High field BOLD response to forepaw stimulation in the mouse

Affiliations

High field BOLD response to forepaw stimulation in the mouse

Joanna M Adamczak et al. Neuroimage. 2010 Jun.

Abstract

We have established a robust protocol for longitudinal fMRI in mice at high field MRI using a medetomidine anesthesia. Electrical forepaw stimulation in anesthetized animals is widely used to produce BOLD contrast in the primary somatosensory cortex. To preserve neuronal activity, most fMRI experiments used alpha-chloralose to produce sedation, but severe side effects make this procedure unsuitable for survival experiments. As advantageous alternative, the alpha(2)-adrenergic receptor agonist medetomidine has been applied successfully to permit longitudinal fMRI studies in rats. With the advent of transgenic technology, mouse models have become increasingly attractive raising the demand for implementation of a suitable fMRI protocol for mice. Therefore, we investigated the use of medetomidine for repetitive fMRI experiments in C57BL/6 mice. We evaluated the optimal medetomidine dose for subcutaneous application. Somatosensory evoked potentials (SSEPs) in the contralateral somatosensory cortex were recorded to assess brain activity under medetominidine following forepaw stimulation. Repetitive administration of medetomidine, the requirement for longitudinal brain activation studies, was well tolerated. Using the forepaw stimulation paradigm, we observed BOLD contrast in the contralateral somatosensory cortex in approximately 50% of the performed scans using gradient echo-echo planar imaging (GE-EPI). However, imaging the small mouse brain at high field strength is challenging and we observed strong susceptibility artifacts in GE-EPI images in the cortex. We have developed an agar gel cap for successful compensation of these artifacts as prerequisite for successful mouse fMRI at 11.7T. The established protocol will be suitable for brain activation studies in transgenic animals and for studies of functional deficit and recovery after brain injury in mice.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources