Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2010 Mar 30;29(7-8):851-9.
doi: 10.1002/sim.3793.

Estimating adjusted risk difference (RD) and number needed to treat (NNT) measures in the Cox regression model

Affiliations
Comparative Study

Estimating adjusted risk difference (RD) and number needed to treat (NNT) measures in the Cox regression model

R P Laubender et al. Stat Med. .

Abstract

In medical research, risk difference (RD) and number needed to treat (NNT) measures for survival times have been mainly proposed without consideration of covariates. In this paper, we develop adjusted RD and NNT measures for use in observational studies with survival time outcomes within the framework of the Cox proportional hazards regression model taking the distribution of confounders into account. We consider the typical situation of a cohort study in which the effect of an exposure on a survival time outcome is investigated and important covariates have to be taken into account. The exposure effect described by means of the RD and NNT measures in dependence on whether the effect of allocating an exposure to unexposed persons (number needed to be exposed) or that of removing an exposure from exposed persons (exposure impact number) is considered. Estimation of these adjusted RD and NNT measures is performed by using the average RD approach recently developed for logistic regression. To determine standard errors and confidence intervals for these estimators we use two approaches, the delta method with respect to the regression coefficients of the Cox model and bootstrapping and compare each other. The performance of these estimators is assessed by performing Monte Carlo simulations demonstrating clear advantages of the bootstrap method. The proposed method for point and interval estimation of adjusted RD and NNT measures in the Cox model is illustrated by means of data of the Düsseldorf Obesity Mortality Study (DOMS).

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources