Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1977 Nov;101(3):318-28.
doi: 10.1111/j.1748-1716.1977.tb06013.x.

Effect of endurance training on the capacity of red and white skeletal muscle of mouse to oxidize carboxyl-14C-labelled palmitate

Effect of endurance training on the capacity of red and white skeletal muscle of mouse to oxidize carboxyl-14C-labelled palmitate

A Salminen et al. Acta Physiol Scand. 1977 Nov.

Abstract

Three groups of mice were trained for 1, 4 and 5 months according to different running programs on a motor driven treadmill and the fatty acid oxidation capacity (FAO) and the activities of some enzymes of energy metabolism (cytochrome c oxidase, malate dehydrogenase, triosephosphate dehydrogenase, and lactate dehydrogenase) were determined from m. quadriceps femoris (MQF). Endurance training increased the FAO [5-month training 4 days/week, 30 min/day 22% (p less than 0.05); 1-month training, 7 days/week, 150 min/day 37% (p less than 0.001); 4-month training, 5 days/week, 60 min/day 24% (p less than 0.05)]. The activities of cytochrome c oxidase and malate dehydrogenase increased approx. 30% (p less than 0.001) whereas triosephosphate dehydrogenase and lactate dehydrogenase activities were not prominently influenced by training. The predominantly red part of MQF of untrained animals oxidized palmitate four times faster than the predominantly white part. The activities of cytochrome c oxidase and malate dehydrogenase were two times higher showing pronounced FAO in the red part. Endurance training increased the FAO and activities of oxidative enzymes in the red and white parts and in the whole muscle relatively equally resulting in similar differences between the muscle types after training. The absolute increase in the FAO of the red muscle was, however, manyfold when compared in chemical units to the white muscle.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources