Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Oct;10(8):851-60.
doi: 10.2174/138920009790274559.

Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers

Affiliations

Nanotechology-based strategies to enhance the efficacy of photodynamic therapy for cancers

Wen-Tyng Li. Curr Drug Metab. 2009 Oct.

Abstract

Photodynamic therapy (PDT) combines photosensitizer, visible light and oxygen, which has the characteristics of high selectivity, minimal invasiveness, low side effect, and allowing repetitive application. The photophysics and mechanisms leading to cell death mediated by PDT have been studied extensively, and PDT has been approved as the modality for superficial tumors and non-cancerous diseases worldwide. For non-dermatogoical applications, the photosensitizers are delivered systemically. Selective therapeutic effect against tumor tissues can be provided by the nature of drugs and tumor physiology. Improved targeting photosensitizer helps preventing damage to the surrounding healthy tissue and lowering dose of drugs and light. The use of nanotechnology in photosensitizer delivery is an attractive approach because nanomaterials may satisfy the need for enhancing PDT efficacy. Recent advances in the use of nanotechnology for PDT application include formulation of biodegradable and non-degradable nanoparticles as passive carriers for photosensitizing agents as well as synthesizing photosensitizer-specific target moiety conjugates for active targeting. This article focuses on passive and active targeting strategies involving nanotechnology to enhance PDT efficacy for cancers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources