Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;277(8):1876-85.
doi: 10.1111/j.1742-4658.2010.07604.x. Epub 2010 Mar 1.

Purification of three aminotransferases from Hydrogenobacter thermophilus TK-6--novel types of alanine or glycine aminotransferase: enzymes and catalysis

Affiliations
Free article

Purification of three aminotransferases from Hydrogenobacter thermophilus TK-6--novel types of alanine or glycine aminotransferase: enzymes and catalysis

Masafumi Kameya et al. FEBS J. 2010 Apr.
Free article

Abstract

Aminotransferases catalyse synthetic and degradative reactions of amino acids, and serve as a key linkage between central carbon and nitrogen metabolism in most organisms. In this study, three aminotransferases (AT1, AT2 and AT3) were purified and characterized from Hydrogenobacter thermophilus, a hydrogen-oxidizing chemolithoautotrophic bacterium, which has been reported to possess unique features in its carbon and nitrogen anabolism. AT1, AT2 and AT3 exhibited glutamate:oxaloacetate aminotransferase, glutamate:pyruvate aminotransferase and alanine:glyoxylate aminotransferase activities, respectively. In addition, both AT1 and AT2 catalysed a glutamate:glyoxylate aminotransferase reaction. Interestingly, phylogenetic analysis showed that AT2 belongs to aminotransferase family IV, whereas known glutamate:pyruvate aminotransferases and glutamate:glyoxylate aminotransferases are members of family Igamma. In contrast, AT3 was classified into family I, distant from eukaryotic alanine:glyoxylate aminotransferases which belong to family IV. Although Thermococcus litoralis alanine:glyoxylate aminotransferase is the sole known example of family I alanine:glyoxylate aminotransferases, it is indicated that this alanine:glyoxylate aminotransferase and AT3 are derived from distinct lineages within family I, because neither high sequence similarity nor putative substrate-binding residues are shared by these two enzymes. To our knowledge, this study is the first report of the primary structure of bacterial glutamate:glyoxylate aminotransferase and alanine:glyoxylate aminotransferase, and demonstrates the presence of novel types of aminotransferase phylogenetically distinct from known eukaryotic and archaeal isozymes.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources