Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct;6(5):681-8.
doi: 10.1016/j.nano.2010.02.001. Epub 2010 Mar 6.

Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles

Affiliations

Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles

Fidel Martinez-Gutierrez et al. Nanomedicine. 2010 Oct.

Abstract

Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. Nosocomial infections represent an enormous emerging problem, especially in patients with ambulatory treatment, which requires that they wear medical devices for an extended period of time. In this work, an evaluation of the antimicrobial activity of both silver and titanium nanoparticles was carried out against a panel of selected pathogenic and opportunistic microorganisms, some of them commonly associated with device-associated infections. Cytotoxicity assays monitoring DNA damage and cell viability were evaluated using human-derived monocyte cell lines. We show that silver-coated nanoparticles having a size of 20-25 nm were the most effective among all the nanoparticles assayed against the tested microorganisms. In addition, these nanoparticles showed no significant cytotoxicity, suggesting their use as antimicrobial additives in the process of fabrication of ambulatory and nonambulatory medical devices.

From the clinical editor: In this study, antimicrobial activity of silver and titanium nanoparticles was evaluated against a panel of selected pathogenic and opportunistic microorganisms. Silver-coated nanoparticles of 20-25 nm size were the most effective among all the nanoparticles without significant cytotoxicity, suggesting their use as antimicrobial additives in the process of fabrication of ambulatory and nonambulatory medical devices.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources