Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Jun;77(6):931-9.
doi: 10.1124/mol.109.063289. Epub 2010 Mar 9.

A molecular model of the human UDP-glucuronosyltransferase 1A1, its membrane orientation, and the interactions between different parts of the enzyme

Affiliations

A molecular model of the human UDP-glucuronosyltransferase 1A1, its membrane orientation, and the interactions between different parts of the enzyme

Liisa Laakkonen et al. Mol Pharmacol. 2010 Jun.

Abstract

The vertebrate UDP-glucuronosyltransferases (UGTs) are membrane-bound enzymes of the endoplasmic reticulum that process both endogenous and exogenous substrates. The human UGTs are well known biologically, but biophysical understanding is scarce, largely because of problems in purification. The one resolved crystal structure covers the C-terminal domain of the human UGT2B7. Here, we present a homology model of the complete monomeric human UGT1A1, the enzyme that catalyzes bilirubin glucuronidation. The enzyme can be seen as composed of four different domains: two large ones, the N- and C-terminal domains, and two small ones, the "envelope" helices and the transmembrane segment that includes the cytoplasmic tail. The hydrophobic core of the N-terminal domain and the two envelope helices that connect the large domains are shown to be structurally well conserved even among distant homologs and can thus be modeled with good certainty according to plant and bacterial structures. We consider alternative solutions for the highly variable N-terminal regions that probably contribute to substrate binding. The bilirubin binding site, known pathological mutations in UGT1A1, and other specific residues have been examined in the context of the model with regard to available experimental data. A putative orientation of the protein relative to the membrane has been derived from the location of predicted N-glycosylation sites. The model presents extensive interactions between the N- and C-terminal domains, the two envelope helices, and the membrane. Together, these interactions could allow for a concerted large-scale conformational change during catalysis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources