A helitron-like transposon superfamily from lepidoptera disrupts (GAAA)(n) microsatellites and is responsible for flanking sequence similarity within a microsatellite family
- PMID: 20217059
- DOI: 10.1007/s00239-010-9330-6
A helitron-like transposon superfamily from lepidoptera disrupts (GAAA)(n) microsatellites and is responsible for flanking sequence similarity within a microsatellite family
Abstract
Transposable elements (TEs) are mobile DNA regions that alter host genome structure and gene expression. A novel 588 bp non-autonomous high copy number TE in the Ostrinia nubilalis genome has features in common with miniature inverted-repeat transposable elements (MITEs): high A + T content (62.3%), lack of internal protein coding sequence, and secondary structure consisting of subterminal inverted repeats (SIRs). The O. nubilalis TE has inserted at (GAAA)(n) microsatellite loci, and was named the microsatellite-associated interspersed nuclear element (MINE-1). Non-autonomous MINE-1 superfamily members also were identified downstream of (GAAA)(n) microsatellites within Bombyx mori and Pectinophora gossypiella genomes. Of 316 (GAAA)(n) microsatellites from the B. mori whole genome sequence, 201 (63.6%) have associated autonomous or non-autonomous MINE-1 elements. Autonomous B. mori MINE-1s a encode a helicase and endonuclease domain RepHel-like protein (BMHELp1) indicating their classification as Helitron-like transposons and were renamed Helitron1_BM. Transposition of MINE-1 members in Lepidoptera has resulted in the disruption of (GAAA)(n) microsatellite loci, has impacted the application of microsatellite-based genetic markers, and suggests genome sequence that flanks TT/AA dinucleotides may be required for target site recognition by RepHel endonuclease domains.