Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:654:479-500.
doi: 10.1007/978-90-481-3271-3_21.

Islet structure and function in the GK rat

Affiliations
Review

Islet structure and function in the GK rat

Bernard Portha et al. Adv Exp Med Biol. 2010.

Abstract

Type 2 diabetes mellitus (T2D) arises when the endocrine pancreas fails to secrete sufficient insulin to cope with the metabolic demand because of beta-cell secretory dysfunction and/or decreased beta-cell mass. Defining the nature of the pancreatic islet defects present in T2D has been difficult, in part because human islets are inaccessible for direct study. This review is aimed to illustrate to what extent the Goto-Kakizaki rat, one of the best characterized animal models of spontaneous T2D, has proved to be a valuable tool offering sufficient commonalities to study this aspect. A comprehensive compendium of the multiple functional GK islet abnormalities so far identified is proposed in this perspective. The pathogenesis of defective beta-cell number and function in the GK model is also discussed. It is proposed that the development of T2D in the GK model results from the complex interaction of multiple events: (i) several susceptibility loci containing genes responsible for some diabetic traits (distinct loci encoding impairment of beta-cell metabolism and insulin exocytosis, but no quantitative trait locus for decreased beta-cell mass); (ii) gestational metabolic impairment inducing an epigenetic programming of the offspring pancreas (decreased beta-cell neogenesis and proliferation) transmitted over generations; and (iii) loss of beta-cell differentiation related to chronic exposure to hyperglycaemia/hyperlipidaemia, islet inflammation, islet oxidative stress, islet fibrosis and perturbed islet vasculature.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources