Development of a low-cost real-time reverse transcriptase-polymerase chain reaction technique for the detection and quantification of hepatitis C viral load
- PMID: 20218905
- DOI: 10.1515/CCLM.2010.134
Development of a low-cost real-time reverse transcriptase-polymerase chain reaction technique for the detection and quantification of hepatitis C viral load
Abstract
Background: It is necessary to develop a highly specific and sensitive assay to quantify the exact amount of hepatitis C virus (HCV) RNA in blood of patients with hepatitis C. For this reason, a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay for quantification of HCV RNA in human plasma was developed.
Methods: A pair of primers as well as hybridization probes were selected. A real-time RT-PCR was set up and optimized. To establish the sensitivity of the assay, a serial dilution of HCV standards and reference sera, including the six major HCV genotypes, was used. The performance of the assay was evaluated with 191 known HCV-RNA positive and 100 negative samples.
Results: The real-time assay had a sensitivity of 50 IU/mL, with a dynamic range of detection between 10(3) and 10(6) IU/mL. The coefficients of variation of threshold cycle values in intra- and inter-day-runs were <1.77% and 3.40%, respectively. Measurement of HCV-RNA positive samples yielded reproducible data with 100% specificity.
Conclusions: The high sensitivity, simplicity, reproducibility, wide dynamic range, and low cost of this real-time HCV RNA quantification makes this method especially suitable for monitoring viral load during therapy and tailoring of treatment schedules accordingly.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical