Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr;48(4):380-7.
doi: 10.1097/MLR.0b013e3181ca2647.

The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents

Affiliations

The relationship of 60 disease diagnoses and 15 conditions to preference-based health-related quality of life in Ontario hospital-based long-term care residents

Jonathan M C Lam et al. Med Care. 2010 Apr.

Abstract

Background: Population-based diagnosis- and condition-specific health-related quality of life (HRQoL) scores are required for decision-making and research purposes. These HRQoL scores do not exist for hospital-based long-term care (LTC) residents.

Objective: To estimate the impact of 60 diseases and 15 conditions on caregiver-assessed preference-based HRQoL.

Methods: Residents in hospital-based LTC facilities in Ontario, Canada were identified from administrative databases containing resident minimum data set (MDS) assessments completed between August 1st, 2003 and March 31st, 2008. A preference-based HRQoL measure, the MDS Health-Status Index (MDS-HSI) score, was calculated for 66,193 residents. Average MDS-HSI scores and multivariate linear regression models were used to estimate the impact of the diagnoses and conditions, respectively.

Results: After adjusting for age, sex, and other diagnoses, aphasia exhibited the largest negative relationship to the MDS-HSI (-0.085), followed by cancer (-0.072) and Alzheimer disease (-0.062). Cancer was also the second most prevalent diagnosis (27.6%). Lack of balance was a common condition (87.3%) and it had the greatest negative relationship to MDS-HSI scores among the 15 conditions (-0.099). The diagnoses and conditions regression models had R values of 0.12 and 0.34, respectively, suggesting that clinical conditions provided better explanatory variables for the MDS-HSI than diagnoses.

Conclusions: The findings suggest that diseases affect preference-based HRQoL differently in a hospital-based LTC population compared with previous studies in the general population. The population-based MDS-HSI scores from this study can be used as reference values in cost-effectiveness analyses for hospital-based LTC populations.

PubMed Disclaimer

Similar articles

Cited by

Publication types