Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010:660:183-93.
doi: 10.1007/978-1-60761-350-3_17.

Paraoxonase 1, quorum sensing, and P. aeruginosa infection: a novel model

Affiliations

Paraoxonase 1, quorum sensing, and P. aeruginosa infection: a novel model

M L Estin et al. Adv Exp Med Biol. 2010.

Abstract

Pseudomonas aeruginosa is a Gram-negative bacterium which exacts a heavy burden on immunocompromised patients, but is non-pathogenic in a healthy host. Using small signaling molecules called acyl-homoserine lactones (AHLs), populations of P. aeruginosa can coordinate phenotypic changes, including biofilm formation and virulence factor secretion. This concentration-dependent process is called quorum sensing (QS). Interference with QS has been identified as a potential source of new treatments for P. aeruginosa infection. The human enzyme paraoxonase 1 (PON1) degrades AHL molecules, and is a promising candidate for QS interference therapy. Although paraoxonase orthologs exist in many species, genetic redundancy in humans and other mammals has made studying the specific effects of PON1 quite difficult. Arthropods, however, do not express any PON homologs. We generated a novel model to study the specific effects of PON1 by transgenically expressing human PON1 in Drosophila melanogaster. Using this model, we showed that P. aeruginosa infection lethality is QS-dependent, and that expression of PON1 has a protective effect. This work demonstrates the value of a D. melanogaster model for investigating the specific functions of members of the paraoxonase family in vivo, and suggests that PON1 plays a role in innate immunity.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources