Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Mar 1;99(1):39-46.
doi: 10.1016/0378-1119(91)90031-6.

Structural and functional conservation between the high-affinity K+ transporters of Saccharomyces uvarum and Saccharomyces cerevisiae

Affiliations
Comparative Study

Structural and functional conservation between the high-affinity K+ transporters of Saccharomyces uvarum and Saccharomyces cerevisiae

J A Anderson et al. Gene. .

Abstract

In Saccharomyces cerevisiae, high-affinity K+ uptake is dependent upon a 180-kDa plasma membrane protein encoded by TRK1 (c-TRK1) [Gaber et al., Mol. Cell. Biol. 8 (1988) 2848-2859)]. Although hybridization with a c-TRK1 probe revealed highly homologous sequences in the genomes of most Saccharomyces species, the TRK1 sequence in S. uvarum (u-TRK1) was detected only under low-stringency conditions. We cloned u-TRK1 and found it to confer high-affinity K+ uptake in S. cerevisiae. A comparison of the inferred amino acid sequences reveals 78% identity and 86% similarity between the two high-affinity transporters. The most highly conserved regions are the putative membrane-spanning domains (95% identical), suggesting that the structure of the transmembrane domains is important for high-affinity K+ transport.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources