Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 11:(37):1745.
doi: 10.3791/1745.

Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin

Affiliations

Comprehensive compositional analysis of plant cell walls (Lignocellulosic biomass) part I: lignin

Cliff E Foster et al. J Vis Exp. .

Abstract

The need for renewable, carbon neutral, and sustainable raw materials for industry and society has become one of the most pressing issues for the 21st century. This has rekindled interest in the use of plant products as industrial raw materials for the production of liquid fuels for transportation(1) and other products such as biocomposite materials(7). Plant biomass remains one of the greatest untapped reserves on the planet(4). It is mostly comprised of cell walls that are composed of energy rich polymers including cellulose, various hemicelluloses (matrix polysaccharides, and the polyphenol lignin(6) and thus sometimes termed lignocellulosics. However, plant cell walls have evolved to be recalcitrant to degradation as walls provide tensile strength to cells and the entire plants, ward off pathogens, and allow water to be transported throughout the plant; in the case of trees up to more the 100 m above ground level. Due to the various functions of walls, there is an immense structural diversity within the walls of different plant species and cell types within a single plant(4). Hence, depending of what crop species, crop variety, or plant tissue is used for a biorefinery, the processing steps for depolymerization by chemical/enzymatic processes and subsequent fermentation of the various sugars to liquid biofuels need to be adjusted and optimized. This fact underpins the need for a thorough characterization of plant biomass feedstocks. Here we describe a comprehensive analytical methodology that enables the determination of the composition of lignocellulosics and is amenable to a medium to high-throughput analysis. In this first part we focus on the analysis of the polyphenol lignin (Figure 1). The method starts of with preparing destarched cell wall material. The resulting lignocellulosics are then split up to determine its lignin content by acetylbromide solubilization(3), and its lignin composition in terms of its syringyl, guaiacyl- and p-hydroxyphenyl units(5). The protocol for analyzing the carbohydrates in lignocellulosic biomass including cellulose content and matrix polysaccharide composition is discussed in Part II(2).

PubMed Disclaimer

Similar articles

Cited by

References

    1. Carroll A, Somerville C. Cellulosic Biofuels. Annual Review of Plant Biology. 2009;60:165–165. - PubMed
    1. Foster CE, Martin T, Pauly M. Comprehensive compositional analysis of Plant Cell Walls (Lignocellulosic biomass), Part II: Carbohydrates. J Vis Exp. 2010. - PMC - PubMed
    1. Fukushima RS, Hatfield RD. Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J. Agric. Food Chem. 2001;49(7):3133–3133. - PubMed
    1. Pauly M, Keegstra K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J. 2008;54(4):559–559. - PubMed
    1. Robinson AR, Mansfield SD. Rapid analysis of poplar lignin monomer composition by a streamlined thioacidolysis procedure and near-infrared reflectance-based prediction modeling. Plant J. 2009;58(4):706–706. - PubMed

Publication types

LinkOut - more resources