Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar 3;6(2):116-28.
doi: 10.7150/ijbs.6.116.

E2F-1 has dual roles depending on the cell cycle

Affiliations

E2F-1 has dual roles depending on the cell cycle

Fikret Sahin et al. Int J Biol Sci. .

Abstract

The E2F family of transcription factors play a critical role in the control of cell proliferation. E2F-1 is the major cellular target of pRB and is regulated by pRB during cell proliferation. E2F-1-mediated activation and repression of target genes occurs in different settings. The role of E2F-1 and E2F-1/pRB complexes in regulation of different target genes, and in cycling versus quiescent cells, is unclear. In this study, effects of free E2F-1 (doesn't complex with pRb) and E2F-1/pRb complex, on E2F-1 target gene expression were compared in different cell growth conditions. Findings suggest that E2F-1 acts in different ways, not only depending on the target gene but also depending on different stages of the cell cycle. For example, E2F-1 acts as part of the repression complex with pRB in the expression of DHFR, b-myb, TK and cdc2 in asynchronously growing cells; on the other hand, E2F-1 acts as an activator in the expression of the same genes in cells that are re-entering the cycle.

Keywords: Cell cycle; E2F-1; Rb; TK; cdc2; cmyc; dhfr.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: There are no conflicts of interest and financial disclosure in the subject matter of this paper.

Figures

Figure 1
Figure 1
A. Overexpression of E2F-1/wt and E2F-1/411. Cell free extracts from an equivalent number of cells (5 X 104) of E2F-1/wt and E2F-1/411 were analyzed by immunoblotting using anti-E2F-1 specific polyclonal antibody after separation on 10% SDS-PAGE. The position of the E2F-1 bands are indicated on the right. B. Co-immunoprecipitation of pRb and E2F-1. Cell free extracts from the ψ-CRE cell lines overexpressing E2F-1/wt, E2F-1/411, or control (pX17) were co-precipitated with a monoclonal antibody specific for E2F-1 and followed by western blotting with E2F-1 polyclonal antibody or pRB polyclonal antibody as described in Materials and Methods. C. Histograms of cell cycle analysis of pX17, E2F-1/wt and E2F-1/411 overexpressing asynchronously growing cells are shown with the mean of cell numbers in G1, S and G2/M phases. D. Number of pX17, E2F-1/wt and E2F-1/411 overexpressing asynchronously growing cells in G1. G1 values are mean ± S.E.M., n=4, * P< 0.05 compared to control (pX17) ψ-CRE cell line, u P< 0.05 compared to ψ-CRE E2F-1/wt cell lines. E. Cells were plated in soft agar medium and stained as described in Materials and Methods. Colonies greater than 50 μm in diameter were scored after three weeks of growth. Transformation frequency was expressed as the percentage of total plated cells that formed colonies. Values are mean ± S.E.M., n=5, * P< 0.05 compared to control (pX17) ψ-CRE cell line, u P< 0.05 compared to ψ-CRE E2F-1/wt cell lines.
Figure 2
Figure 2
E2F-1 target gene expression levels in asynchronously growing ψ-CRE cells overexpressing E2F-1/wt, E2F-1/411 and control (pX17). A. (Left Column) MRT-PCR of the total RNA of the ψ-CRE cells overexpressing E2F-1/wt , 411 and control was carried out as described in Materials and Methods and products were analyzed on a 1.5% agarose gel. The gels were stained with EtBr, and EtBr signals were analyzed by computer assisted densitometry. B. (Right Column) Results are presented as fold increases in expression of target gene for each cell line compared to control (pX17), which was given the value of 100. Values are mean ± S.E.M., n>3, * P< 0.05 compared to control (pX17) ψ-CRE cells. In both columns, from top to bottom, the genes analyzed were DHFR, B-myb, Cyclin D1, Cdc2, c-myc, TK and RB.
Figure 3
Figure 3
E2F-1 target protein expression levels in asynchronously growing ψ-CRE cells overexpressing E2F-1/wt or E2F-1/411. Cell free extracts from an equivalent number of cells (5 X 104) of E2F-1/wt and E2F-1/411 were analyzed by immunoblotting using specific antibody for the indicated individual protein after separation on 10% SDS-PAGE.
Figure 4
Figure 4
Cell cycle analysis of pX17, E2F-1/wt and E2F-1/411 overexpressing cells. A. Cells were starved in 0.5% FBS for 60 hours, at which time samples were taken and analyzed by flow cytometry. The histograms from pX17, E2F-1/wt and E2F-1/411 overexpressing cells are shown with the mean of cell numbers in G0/G1, S and G2/M phases. B. Number of pX17, E2F-1/wt or E2F-1/411 overexpressing cells in G0/G1. G0/G1 values are mean ± S.E.M., n=4, * P< 0.05 compared to control (pX17) ψ-CRE cell line, u P< 0.05 compared to ψ-CRE E2F-1/wt cell lines. C. Cells were collected at various times after serum stimulation and the percentage of cells in S phase of the cell cycle was determined. Values are mean ± S.E.M., n=3.
Figure 5
Figure 5
Roles of E2F-1 and pRb on target gene expression levels in synchronously growing ψ-CRE cells. A. (Left Column) MRT-PCR of the total RNA of control ψ-CRE cells (pX17) and ψ-CRE cells overexpressing E2F-1/wt and E2F-1/-411. The cells were starved and then stimulated back into the cell cycle at time 0 as described in Materials and Methods. Time points analyzed were time 0, 6 hours, 12 hours and 18 hours. Products were analyzed on 1.5% agarose gels. The gels were stained with EtBr, and EtBr signals were analyzed by computer assisted densitometry. B. (Right Column) Results from A are presented as fold increases in expression (y-axis) of each bar graph of target genes for each cell line compared to control (pX17), which was given the value of 100 at time 0. Values are mean ± S.E.M., n>3, * P< 0.05 compared to control (pX17) ψ-CRE cells at the same time point. In both columns, from top to bottom, the genes analyzed were DHFR, B-myb, Cdc2, Cyclin D1, c-myc, TK and RB.
Figure 6
Figure 6
Models for the E2F-1 and pRb roles for target gene expression. Models were designed from the data presented in this paper. While repressor E2F complex generic types is the most appropriate for the target genes including, DHFR, b-myb, cdc-2, Cyclin D1, C-myc and TK in cycling cells, the inhibited E2F complex is the most appropriate generic types of E2F complexes for the RB. Possible models were designed for individual genes in cells re-entering the cycle according to the results.

Similar articles

Cited by

References

    1. Hallstrom TC, Nevins JR. Balancing the decision of cell proliferation and cell fate. Cell Cycle. 2009;8:532–535. - PMC - PubMed
    1. Helin K, Harlow E, Fattaey A. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol. 1993;13:6501–6508. - PMC - PubMed
    1. Johnson DG, Ohtani K, Nevins JR. Autoregulatory control of E2F1 expression in response to positive and negative regulators of cell cycle progression. Genes Dev. 1994;8:1514–1525. - PubMed
    1. Sherr CJ. The Pezcoller lecture: cancer cell cycles revisited. Cancer Res. 2000;60:3689–3695. - PubMed
    1. Dyson N. The regulation of E2F by pRB-family proteins. Genes Dev. 1998;12:2245–2262. - PubMed