A survey of stimulation methods used in SSVEP-based BCIs
- PMID: 20224799
- PMCID: PMC2833411
- DOI: 10.1155/2010/702357
A survey of stimulation methods used in SSVEP-based BCIs
Abstract
Brain-computer interface (BCI) systems based on the steady-state visual evoked potential (SSVEP) provide higher information throughput and require shorter training than BCI systems using other brain signals. To elicit an SSVEP, a repetitive visual stimulus (RVS) has to be presented to the user. The RVS can be rendered on a computer screen by alternating graphical patterns, or with external light sources able to emit modulated light. The properties of an RVS (e.g., frequency, color) depend on the rendering device and influence the SSVEP characteristics. This affects the BCI information throughput and the levels of user safety and comfort. Literature on SSVEP-based BCIs does not generally provide reasons for the selection of the used rendering devices or RVS properties. In this paper, we review the literature on SSVEP-based BCIs and comprehensively report on the different RVS choices in terms of rendering devices, properties, and their potential influence on BCI performance, user safety and comfort.
Figures




Similar articles
-
Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.J Neural Eng. 2019 Oct 10;16(6):066007. doi: 10.1088/1741-2552/ab2b7d. J Neural Eng. 2019. PMID: 31220820
-
Customized stimulation enhances performance of independent binary SSVEP-BCIs.Clin Neurophysiol. 2011 Jan;122(1):128-33. doi: 10.1016/j.clinph.2010.05.021. Epub 2010 Jun 22. Clin Neurophysiol. 2011. PMID: 20573542
-
A new grid stimulus with subtle flicker perception for user-friendly SSVEP-based BCIs.J Neural Eng. 2023 Mar 13;20(2). doi: 10.1088/1741-2552/acbee0. J Neural Eng. 2023. PMID: 36827704
-
Enhancing the Usability of Brain-Computer Interface Systems.Comput Intell Neurosci. 2019 Jun 16;2019:5427154. doi: 10.1155/2019/5427154. eCollection 2019. Comput Intell Neurosci. 2019. PMID: 31316556 Free PMC article. Review.
-
Intermodulation frequency components in steady-state visual evoked potentials: Generation, characteristics and applications.Neuroimage. 2024 Dec 1;303:120937. doi: 10.1016/j.neuroimage.2024.120937. Epub 2024 Nov 15. Neuroimage. 2024. PMID: 39550056 Review.
Cited by
-
Brain computer interfaces, a review.Sensors (Basel). 2012;12(2):1211-79. doi: 10.3390/s120201211. Epub 2012 Jan 31. Sensors (Basel). 2012. PMID: 22438708 Free PMC article. Review.
-
A BMI-based occupational therapy assist suit: asynchronous control by SSVEP.Front Neurosci. 2013 Sep 23;7:172. doi: 10.3389/fnins.2013.00172. eCollection 2013. Front Neurosci. 2013. PMID: 24068982 Free PMC article.
-
Steady-State Visually Evoked Potentials Elicited by Multifrequency Pattern-Reversal Stimulation.Transl Vis Sci Technol. 2019 Feb 28;8(1):24. doi: 10.1167/tvst.8.1.24. eCollection 2019. Transl Vis Sci Technol. 2019. PMID: 30834172 Free PMC article.
-
Stimulator Selection in SSVEP-Based Spatial Selective Attention Study.Comput Intell Neurosci. 2016;2016:6410718. doi: 10.1155/2016/6410718. Epub 2016 Dec 1. Comput Intell Neurosci. 2016. PMID: 28044073 Free PMC article.
-
An investigation into the comfort and neural response of textured visual stimuli in pediatric SSVEP-based BCI.Sci Rep. 2025 Jul 18;15(1):26168. doi: 10.1038/s41598-025-09540-8. Sci Rep. 2025. PMID: 40681665 Free PMC article.
References
-
- Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clinical Neurophysiology. 2002;113(6):767–791. - PubMed
-
- Bashashati A, Fatourechi M, Ward RK, Birch GE. A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals. Journal of Neural Engineering. 2007;4(2):R32–R57. - PubMed
-
- Herrmann CS. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research. 2001;137(3-4):346–353. - PubMed
-
- Pun T, Alecu TI, Chanel G, Kronegg J, Voloshynovskiy S. Brain-computer interaction research at the Computer Vision and Multimedia Laboratory, University of Geneva. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2006;14(2):210–213. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources