How to predict diffusion of medium-sized molecules in polymer matrices. From atomistic to coarse grain simulations
- PMID: 20224911
- DOI: 10.1007/s00894-010-0687-7
How to predict diffusion of medium-sized molecules in polymer matrices. From atomistic to coarse grain simulations
Abstract
The normal diffusion regime of many small and medium-sized molecules occurs on a time scale that is too long to be studied by atomistic simulations. Coarse-grained (CG) molecular simulations allow to investigate length and time scales that are orders of magnitude larger compared to classical molecular dynamics simulations, hence providing a valuable approach to span time and length scales where normal diffusion occurs. Here we develop a novel multi-scale method for the prediction of diffusivity in polymer matrices which combines classical and CG molecular simulations. We applied an atomistic-based method in order to parameterize the CG MARTINI force field, providing an extension for the study of diffusion behavior of penetrant molecules in polymer matrices. As a case study, we found the parameters for benzene (as medium sized penetrant molecule whose diffusivity cannot be determined through atomistic models) and Poly (vinyl alcohol) (PVA) as polymer matrix. We validated our extended MARTINI force field determining the self diffusion coefficient of benzene (2.27·10⁻⁹m² s⁻¹) and the diffusion coefficient of benzene in PVA (0.263·10⁻¹² m² s⁻¹). The obtained diffusion coefficients are in remarkable agreement with experimental data (2.20·10⁻⁹m² s⁻¹ and 0.25·10⁻¹² m² s⁻¹, respectively). We believe that this method can extend the application range of computational modeling, providing modeling tools to study the diffusion of larger molecules and complex polymeric materials.
Similar articles
-
Transferability of coarse-grained force fields: the polymer case.J Chem Phys. 2008 Feb 14;128(6):064904. doi: 10.1063/1.2829409. J Chem Phys. 2008. PMID: 18282071
-
Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.Phys Chem Chem Phys. 2011 Jun 14;13(22):10437-48. doi: 10.1039/c0cp02981e. Epub 2011 Apr 15. Phys Chem Chem Phys. 2011. PMID: 21494747
-
The MARTINI Coarse-Grained Force Field: Extension to Proteins.J Chem Theory Comput. 2008 May;4(5):819-34. doi: 10.1021/ct700324x. J Chem Theory Comput. 2008. PMID: 26621095
-
Simulating the flow of entangled polymers.Annu Rev Chem Biomol Eng. 2014;5:11-33. doi: 10.1146/annurev-chembioeng-060713-040401. Epub 2014 Feb 3. Annu Rev Chem Biomol Eng. 2014. PMID: 24498953 Review.
-
Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back.Chemphyschem. 2002 Sep 16;3(9):755-69. doi: 10.1002/1439-7641(20020916)3:9<754::aid-cphc754>3.0.co;2-u. Chemphyschem. 2002. PMID: 12436902 Review.
Cited by
-
Thermal stabilization of the deglycating enzyme Amadoriase I by rational design.Sci Rep. 2018 Feb 14;8(1):3042. doi: 10.1038/s41598-018-19991-x. Sci Rep. 2018. PMID: 29445091 Free PMC article.
-
Atomistic modeling of water diffusion in hydrolytic biomaterials.J Mol Model. 2012 Apr;18(4):1495-502. doi: 10.1007/s00894-011-1176-3. Epub 2011 Jul 23. J Mol Model. 2012. PMID: 21785936
-
The experimental evaluation and molecular dynamics simulation of a heat-enhanced transdermal delivery system.AAPS PharmSciTech. 2013 Mar;14(1):111-20. doi: 10.1208/s12249-012-9900-6. Epub 2012 Dec 11. AAPS PharmSciTech. 2013. PMID: 23229382 Free PMC article.
-
Prediction of methane diffusion coefficient in water using molecular dynamics simulation.Heliyon. 2020 Nov 2;6(11):e05385. doi: 10.1016/j.heliyon.2020.e05385. eCollection 2020 Nov. Heliyon. 2020. PMID: 33163679 Free PMC article.
-
From Microscale to Macroscale: Nine Orders of Magnitude for a Comprehensive Modeling of Hydrogels for Controlled Drug Delivery.Gels. 2019 May 15;5(2):28. doi: 10.3390/gels5020028. Gels. 2019. PMID: 31096685 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous