Logic-based models for the analysis of cell signaling networks
- PMID: 20225868
- PMCID: PMC2853906
- DOI: 10.1021/bi902202q
Logic-based models for the analysis of cell signaling networks
Abstract
Computational models are increasingly used to analyze the operation of complex biochemical networks, including those involved in cell signaling networks. Here we review recent advances in applying logic-based modeling to mammalian cell biology. Logic-based models represent biomolecular networks in a simple and intuitive manner without describing the detailed biochemistry of each interaction. A brief description of several logic-based modeling methods is followed by six case studies that demonstrate biological questions recently addressed using logic-based models and point to potential advances in model formalisms and training procedures that promise to enhance the utility of logic-based methods for studying the relationship between environmental inputs and phenotypic or signaling state outputs of complex signaling networks.
Figures



Similar articles
-
Advances in enzymology and related areas of molecular biology. Preface.Adv Enzymol Relat Areas Mol Biol. 2011;78:ix-xi. Adv Enzymol Relat Areas Mol Biol. 2011. PMID: 22220470 No abstract available.
-
State-time spectrum of signal transduction logic models.Phys Biol. 2012 Aug;9(4):045003. doi: 10.1088/1478-3975/9/4/045003. Epub 2012 Aug 7. Phys Biol. 2012. PMID: 22871648 Review.
-
Construction of cell type-specific logic models of signaling networks using CellNOpt.Methods Mol Biol. 2013;930:179-214. doi: 10.1007/978-1-62703-059-5_8. Methods Mol Biol. 2013. PMID: 23086842
-
Hierarchical thinking in network biology: the unbiased modularization of biochemical networks.Trends Biochem Sci. 2004 Dec;29(12):641-7. doi: 10.1016/j.tibs.2004.10.001. Trends Biochem Sci. 2004. PMID: 15544950 Review.
-
Training signaling pathway maps to biochemical data with constrained fuzzy logic: quantitative analysis of liver cell responses to inflammatory stimuli.PLoS Comput Biol. 2011 Mar;7(3):e1001099. doi: 10.1371/journal.pcbi.1001099. Epub 2011 Mar 3. PLoS Comput Biol. 2011. PMID: 21408212 Free PMC article.
Cited by
-
Normalization and statistical analysis of multiplexed bead-based immunoassay data using mixed-effects modeling.Mol Cell Proteomics. 2013 Jan;12(1):245-62. doi: 10.1074/mcp.M112.018655. Epub 2012 Oct 15. Mol Cell Proteomics. 2013. PMID: 23071098 Free PMC article.
-
Modeling formalisms in Systems Biology.AMB Express. 2011 Dec 5;1:45. doi: 10.1186/2191-0855-1-45. AMB Express. 2011. PMID: 22141422 Free PMC article.
-
Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling.Front Microbiol. 2021 May 3;12:667864. doi: 10.3389/fmicb.2021.667864. eCollection 2021. Front Microbiol. 2021. PMID: 34012428 Free PMC article. Review.
-
Relating the chondrocyte gene network to growth plate morphology: from genes to phenotype.PLoS One. 2012;7(4):e34729. doi: 10.1371/journal.pone.0034729. Epub 2012 Apr 30. PLoS One. 2012. PMID: 22558096 Free PMC article.
-
MONOMIALS AND BASIN CYLINDERS FOR NETWORK DYNAMICS.SIAM J Appl Dyn Syst. 2015;14(1):25-42. doi: 10.1137/140975929. SIAM J Appl Dyn Syst. 2015. PMID: 25620893 Free PMC article.
References
-
- Kestler H. A.; Wawra C.; Kracher B.; Kuhl M. (2008) Network modeling of signal transduction: Establishing the global view. BioEssays 30, 1110–1125. - PubMed
-
- Heinrichs A., Kritikou E., Pulverer B., and Raftopoulou M., Eds. (2006) Systems biology: A user's guide, Nature Publishing Group, New York.
-
- Janes K. A.; Lauffenburger D. A. (2006) A biological approach to computational models of proteomic networks. Curr. Opin. Chem. Biol. 10, 73–80. - PubMed
-
- Ideker T.; Lauffenburger D. (2003) Building with a scaffold: Emerging strategies for high- to low-level cellular modeling. Trends Biotechnol. 21, 255–262. - PubMed
-
- Aldridge B. B.; Burke J. M.; Lauffenburger D. A.; Sorger P. K. (2006) Physicochemical modelling of cell signalling pathways. Nat. Cell Biol. 8, 1195–1203. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Molecular Biology Databases