Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1991 May 5;266(13):8322-7.

Endosome-lysosome fusion at low temperature

Affiliations
  • PMID: 2022649
Free article

Endosome-lysosome fusion at low temperature

T Haylett et al. J Biol Chem. .
Free article

Abstract

Based on an initial study (Dunn, W. A., Hubbard, A. L., and Aronson, Jr., N. N. (1980) J. Biol. Chem. 255, 5971-5978), low temperature is often used to selectively inhibit fusion between endosomes and lysosomes. Here we have tried to characterize the nature of this inhibition. In addition to endocytic contents markers, we have used a covalent membrane marker to measure the interaction between endosomes and lysosomes over extended periods of time at low temperature. Mouse macrophage cells (P388D1) and human skin fibroblasts were enzymatically labeled with radioactive galactose to provide a covalent marker for plasma-membrane glycoconjugates. Subsequent endocytic membrane traffic for 24 h at 16 degrees C resulted in a significant transfer of membrane marker, as well as of endocytic contents marker, to high density lysosomes, as observed by subcellular fractionation. The kinetics of this transfer have been analyzed for macrophages using the membrane marker, horseradish peroxidase as fluid-phase, and iodinated acetyl low density lipoprotein as receptor-mediated endocytic contents marker. Transfer to lysosomes occurred only about 6 h after application of the respective marker at 16 degrees C. When transfer to lysosomes was initiated by 15 min preincubation at 37 degrees C, subsequent cooling to 16 degrees C did not inhibit ongoing transfer which continued with the same kinetics as when observed after the lag phase. These results show that low temperature delays an unidentified pre-fusion step, but does not inhibit endosome-lysosome fusion as such.

PubMed Disclaimer

Similar articles

Cited by

Substances

LinkOut - more resources