Toward design-based engineering of industrial microbes
- PMID: 20226723
- PMCID: PMC2885540
- DOI: 10.1016/j.mib.2010.02.001
Toward design-based engineering of industrial microbes
Abstract
Engineering industrial microbes has been hampered by incomplete knowledge of cell biology. Thus an iterative engineering cycle of modeling, implementation, and analysis has been used to increase knowledge of the underlying biology while achieving engineering goals. Recent advances in Systems Biology technologies have drastically improved the amount of information that can be collected in each iteration. As well, Synthetic Biology tools are melding modeling and molecular implementation. These advances promise to move microbial engineering from the iterative approach to a design-oriented paradigm, similar to electrical circuits and architectural design. Genome-scale metabolic models, new tools for controlling expression, and integrated -omics analysis are described as key contributors in moving the field toward Design-based Engineering.
Copyright 2010 Elsevier Ltd. All rights reserved.
Figures



Similar articles
-
Metabolic fluxes and beyond-systems biology understanding and engineering of microbial metabolism.Appl Microbiol Biotechnol. 2010 Nov;88(5):1065-75. doi: 10.1007/s00253-010-2854-2. Epub 2010 Sep 7. Appl Microbiol Biotechnol. 2010. PMID: 20821203 Review.
-
Synthetic biology: tools to design microbes for the production of chemicals and fuels.Biotechnol Adv. 2013 Nov;31(6):811-7. doi: 10.1016/j.biotechadv.2013.03.012. Epub 2013 Apr 8. Biotechnol Adv. 2013. PMID: 23578899 Review.
-
Incorporating comparative genomics into the design-test-learn cycle of microbial strain engineering.FEMS Yeast Res. 2017 Aug 1;17(5). doi: 10.1093/femsyr/fox042. FEMS Yeast Res. 2017. PMID: 28637316 Review.
-
Harnessing microbial metabolomics for industrial applications.World J Microbiol Biotechnol. 2019 Dec 6;36(1):1. doi: 10.1007/s11274-019-2775-x. World J Microbiol Biotechnol. 2019. PMID: 31811524 Review.
-
Aspergilli: systems biology and industrial applications.Biotechnol J. 2012 Sep;7(9):1147-55. doi: 10.1002/biot.201200169. Epub 2012 Aug 14. Biotechnol J. 2012. PMID: 22890866 Review.
Cited by
-
Enhanced production of L-phenylalanine in Corynebacterium glutamicum due to the introduction of Escherichia coli wild-type gene aroH.J Ind Microbiol Biotechnol. 2013 Jun;40(6):643-51. doi: 10.1007/s10295-013-1262-x. Epub 2013 Mar 23. J Ind Microbiol Biotechnol. 2013. PMID: 23526182
-
AlgaGEM--a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome.BMC Genomics. 2011 Dec 22;12 Suppl 4(Suppl 4):S5. doi: 10.1186/1471-2164-12-S4-S5. Epub 2011 Dec 22. BMC Genomics. 2011. PMID: 22369158 Free PMC article.
-
Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries.Cell Mol Life Sci. 2012 Aug;69(16):2671-90. doi: 10.1007/s00018-012-0945-1. Epub 2012 Mar 3. Cell Mol Life Sci. 2012. PMID: 22388689 Free PMC article. Review.
-
Mathematical models of cell factories: moving towards the core of industrial biotechnology.Microb Biotechnol. 2011 Sep;4(5):572-84. doi: 10.1111/j.1751-7915.2010.00233.x. Epub 2010 Dec 8. Microb Biotechnol. 2011. PMID: 21375719 Free PMC article. Review.
-
Dynamic knockdown of E. coli central metabolism for redirecting fluxes of primary metabolites.Metab Eng. 2015 Mar;28:104-113. doi: 10.1016/j.ymben.2014.12.005. Epub 2014 Dec 24. Metab Eng. 2015. PMID: 25542851 Free PMC article.
References
-
- Patil KR, Akesson M, Nielsen J. Use of genome-scale microbial models for metabolic engineering. Curr Opin Biotechnol. 2004;15:64–69. - PubMed
-
- Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopene-overproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nat Biotechnol. 2005;23:612–616. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials