Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Apr 1;664(1):27-33.
doi: 10.1016/j.aca.2010.01.059. Epub 2010 Feb 6.

Multi-class classification with probabilistic discriminant partial least squares (p-DPLS)

Affiliations

Multi-class classification with probabilistic discriminant partial least squares (p-DPLS)

Néstor F Pérez et al. Anal Chim Acta. .

Abstract

This work describes multi-classification based on binary probabilistic discriminant partial least squares (p-DPLS) models, developed with the strategy one-against-one and the principle of winner-takes-all. The multi-classification problem is split into binary classification problems with p-DPLS models. The results of these models are combined to obtain the final classification result. The classification criterion uses the specific characteristics of an object (position in the multivariate space and prediction uncertainty) to estimate the reliability of the classification, so that the object is assigned to the class with the highest reliability. This new methodology is tested with the well-known Iris data set and a data set of Italian olive oils. When compared with CART and SIMCA, the proposed method has better average performance of classification, besides giving a statistic that evaluates the reliability of classification. For the olive oil set the average percentage of correct classification for the training set was close to 84% with p-DPLS against 75% with CART and 100% with SIMCA, while for the test set the average was close to 94% with p-DPLS as against 50% with CART and 62% with SIMCA.

PubMed Disclaimer

LinkOut - more resources