The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the "Fountain of Youth" to mediate healthful aging
- PMID: 20227497
- PMCID: PMC2906618
- DOI: 10.1016/j.jsbmb.2010.03.019
The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the "Fountain of Youth" to mediate healthful aging
Abstract
The nuclear vitamin D receptor (VDR) binds 1,25-dihydroxyvitamin D3 (1,25D), its high affinity renal endocrine ligand, to signal intestinal calcium and phosphate absorption plus bone remodeling, generating a mineralized skeleton free of rickets/osteomalacia with a reduced risk of osteoporotic fractures. 1,25D/VDR signaling regulates the expression of TRPV6, BGP, SPP1, LRP5, RANKL and OPG, while achieving feedback control of mineral ions to prevent age-related ectopic calcification by governing CYP24A1, PTH, FGF23, PHEX, and klotho transcription. Vitamin D also elicits numerous intracrine actions when circulating 25-hydroxyvitamin D3, the metabolite reflecting vitamin D status, is converted to 1,25D locally by extrarenal CYP27B1, and binds VDR to promote immunoregulation, antimicrobial defense, xenobiotic detoxification, anti-inflammatory/anticancer actions and cardiovascular benefits. VDR also affects Wnt signaling through direct interaction with beta-catenin, ligand-dependently blunting beta-catenin mediated transcription in colon cancer cells to attenuate growth, while potentiating beta-catenin signaling via VDR ligand-independent mechanisms in osteoblasts and keratinocytes to function osteogenically and as a pro-hair cycling receptor, respectively. Finally, VDR also drives the mammalian hair cycle in conjunction with the hairless corepressor by repressing SOSTDC1, S100A8/S100A9, and PTHrP. Hair provides a shield against UV-induced skin damage and cancer in terrestrial mammals, illuminating another function of VDR that facilitates healthful aging.
Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Figures




Similar articles
-
1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age.Vitam Horm. 2016;100:165-230. doi: 10.1016/bs.vh.2015.11.005. Epub 2016 Jan 13. Vitam Horm. 2016. PMID: 26827953
-
Molecular mechanisms of vitamin D action.Calcif Tissue Int. 2013 Feb;92(2):77-98. doi: 10.1007/s00223-012-9619-0. Epub 2012 Jul 11. Calcif Tissue Int. 2013. PMID: 22782502 Review.
-
The role of vitamin D in the FGF23, klotho, and phosphate bone-kidney endocrine axis.Rev Endocr Metab Disord. 2012 Mar;13(1):57-69. doi: 10.1007/s11154-011-9199-8. Rev Endocr Metab Disord. 2012. PMID: 21932165 Free PMC article. Review.
-
Vitamin D receptor: key roles in bone mineral pathophysiology, molecular mechanism of action, and novel nutritional ligands.J Bone Miner Res. 2007 Dec;22 Suppl 2:V2-10. doi: 10.1359/jbmr.07s216. J Bone Miner Res. 2007. PMID: 18290715
-
Genomically anchored vitamin D receptor mediates an abundance of bioprotective actions elicited by its 1,25-dihydroxyvitamin D hormonal ligand.Vitam Horm. 2023;123:313-383. doi: 10.1016/bs.vh.2022.12.008. Epub 2023 Jun 8. Vitam Horm. 2023. PMID: 37717990
Cited by
-
Vitamin D and inflammatory bowel disease.Biomed Res Int. 2015;2015:470805. doi: 10.1155/2015/470805. Epub 2015 Apr 27. Biomed Res Int. 2015. PMID: 26000293 Free PMC article. Review.
-
Vitamin D deficiency as a potential risk factor for accelerated aging, impaired hippocampal neurogenesis and cognitive decline: a role for Wnt/β-catenin signaling.Aging (Albany NY). 2020 Jun 17;12(13):13824-13844. doi: 10.18632/aging.103510. Epub 2020 Jun 17. Aging (Albany NY). 2020. PMID: 32554862 Free PMC article. Review.
-
Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease.J Vet Emerg Crit Care (San Antonio). 2013 Mar-Apr;23(2):134-62. doi: 10.1111/vec.12036. J Vet Emerg Crit Care (San Antonio). 2013. PMID: 23566108 Free PMC article. Review.
-
Calcium regulates FGF-23 expression in bone.Endocrinology. 2013 Dec;154(12):4469-82. doi: 10.1210/en.2013-1627. Epub 2013 Oct 18. Endocrinology. 2013. PMID: 24140714 Free PMC article.
-
Multiomics profiling reveals VDR as a central regulator of mesenchymal stem cell senescence with a known association with osteoporosis after high-fat diet exposure.Int J Oral Sci. 2024 May 22;16(1):41. doi: 10.1038/s41368-024-00309-9. Int J Oral Sci. 2024. PMID: 38777841 Free PMC article.
References
-
- Whitfield GK, Jurutka PW, Haussler CA, Hsieh JC, Barthel TK, Jacobs ET, Encinas Dominguez C, Thatcher ML, Haussler MR. Nuclear vitamin D receptor: structure-function, molecular control of gene transcription, and novel bioactions. In: Feldman D, Pike JW, Glorieux FH, editors. Vitamin D. Elsevier Academic Press; Oxford, UK: 2005. pp. 219–261.
-
- Whitfield GK, Dang HTL, Schluter SF, Bernstein RM, Bunag T, Manzon LA, Hsieh G, Dominguez CE, Youson JH, Haussler MR, Marchalonis JJ. Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth. Endocrinology. 2003;144(6):2704–2716. - PubMed
-
- Makishima M, Lu TT, Xie W, Whitfield GK, Domoto H, Evans RM, Haussler MR, Mangelsdorf DJ. Vitamin D receptor as an intestinal bile acid sensor. Science. 2002;296(5571):1313–1316. - PubMed
-
- Echchgadda I, Song CS, Roy AK, Chatterjee B. Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor. Mol Pharmacol. 2004;65(3):720–729. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous