Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;84(6):425-30.
doi: 10.1266/ggs.84.425.

N4: a precise and highly sensitive promoter predictor using neural network fed by nearest neighbors

Affiliations
Free article

N4: a precise and highly sensitive promoter predictor using neural network fed by nearest neighbors

Amjad Askary et al. Genes Genet Syst. 2009 Dec.
Free article

Abstract

Promoters, the genomic regions proximal to the transcriptional start sites (TSSs) play pivotal roles in determining the rate of transcription initiation by serving as direct docking platforms for the RNA polymerase II complex. In the post-genomic era, correct gene prediction has become one of the biggest challenges in genome annotation. Species-independent promoter prediction tools could also be useful in meta-genomics, since transcription data will not be available for micro-organisms which are not cultivated. Promoter prediction in prokaryotic genomes presents unique challenges owing to their organizational properties. Several methods have been developed to predict the promoter regions of genomes in prokaryotes, including algorithms for recognition of sequence motifs, artificial neural networks, and algorithms based on genome's structure. However, none of them satisfies both criteria of sensitivity and precision. In this work, we present a modified artificial neural network fed by nearest neighbors based on DNA duplex stability, named N4, which can predict the transcription start sites of Escherichia coli with sensitivity and precision both above 94%, better than most of the existed algorithms.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms