Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 May 20;29(20):2996-3009.
doi: 10.1038/onc.2010.70. Epub 2010 Mar 15.

Inhibition of EGFR pathway signaling and the metastatic potential of breast cancer cells by PA-MSHA mediated by type 1 fimbriae via a mannose-dependent manner

Affiliations

Inhibition of EGFR pathway signaling and the metastatic potential of breast cancer cells by PA-MSHA mediated by type 1 fimbriae via a mannose-dependent manner

Z-B Liu et al. Oncogene. .

Abstract

To identify more therapeutic targets and clarify the detailed mechanisms of Pseudomonas aeruginosa-mannose-sensitive hemagglutinin (PA-MSHA) on breast cancer cells both in vitro and in vivo. PA-MSHA was administered to epidermal growth factor receptor (EGFR)-positive human breast cancer cell lines MDA-MB-231HM and MDA-MB-468 in vitro and to mice bearing tumor xenografts. The mannose cocultured test was used to detect the effect of mannose on PA-MSHA-induced cell proliferation, cell cycle arrest, apoptosis, and EGFR pathway signaling. We found that cells stimulated with PA-MSHA exhibited a downregulation of EGFR signaling. The addition of mannose partially inhibited the PA-MSHA-stimulated cell anti-proliferative effect, cell apoptosis, cell cycle arrest, activation of apoptosis-associated caspases, and even downregulation of the EGFR signaling pathway. In vivo, PA-MSHA treatment significantly suppressed mammary tumorigenesis in xenografts in mice and decreased lung metastasis in MDA-MB-231HM cell-transplanted mice. Tumor sample analyses confirmed inhibition of the EGFR pathway in the PA-MSHA-treated mice. In conclusion, this study showed that the involvement of the mannose-mediated EGFR pathway has a critical function in the preclinical rationale for the development of PA-MSHA for the treatment of human breast cancer. It also suggests the potentially beneficial use of PA-MSHA in adjuvant therapy for breast tumors with EGFR overexpression.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms